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Abstract: Research Highlights: Pre-programmed cell death in old Aleppo pine needles leads to low
moisture contents in the forest canopy in July, the time when fire activity nears its peak in the
Western Mediterranean Basin. Here, we show, for the first time, that such needle senescence may
increase fire behavior and thus is a potential mechanism explaining why the bulk of the annual
burned area in the region occurs in early summer. Background and Objectives: The brunt of the fire
season in the Western Mediterranean Basin occurs at the beginning of July, when live fuel moisture
content is near its maximum. Here, we test whether a potential explanation to this conundrum lies
in Aleppo pine needle senescence, a result of pre-programmed cell death in 3-years-old needles,
which typically occurs in the weeks preceding the peak in the burned area. Our objective was to
simulate the effects of needle senescence on fire behavior. Materials and Methods: We simulated the
effects of needle senescence on canopy moisture and structure. Fire behavior was simulated across
different phenological scenarios and for two highly contrasting Aleppo pine stand structures, a forest,
and a shrubland. Wildfire behavior simulations were done with BehavePlus6 across a wide range
of wind speeds and of dead fine surface fuel moistures. Results: The transition from surface to
passive crown fire occurred at lower wind speeds under simulated needle senescence in the forest
and in the shrubland. Transitions to active crown fire only occurred in the shrubland under needle
senescence. Maximum fire intensity and severity were always recorded in the needle senescence
scenario. Conclusions: Aleppo pine needle senescence may enhance the probability of crown fire
development at the onset of the fire season, and it could partly explain the concentration of fire
activity in early July in the Western Mediterranean Basin.

Keywords: fire behavior; crown fire; fire modeling; senescence; foliar moisture content; canopy
bulk density
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1. Introduction

Pine-dominated ecosystems are one of the major landscape types in the Mediterranean Basin,
where they cover 25% of the forest surface [1]. One of the most abundant and widespread pine species in
the Mediterranean Basin is Pinus halepensis Mill. (Aleppo pine), which covers 6.8 Mha, at low altitudes
(<500 m) and near the coastline [2]. Aleppo pine is a fire-embracer species meaning that it depends,
at least partly, on fires for seed release from serotinous cones and consequent regeneration [3,4].
Post-fire regeneration often results in dense thickets that show a high accumulation of ladder fuels
leading to vertical fuel continuity [5]. P. halepensis shows a low degree of self-pruning, and these forests
are thus particularly prone to crown fires. Approximately one-third of the total annual burned area in
the Mediterranean Basin occurs in P. halepensis stands [6].

There are different types of crown fires, ranging from individual tree torching, active crown fires
and, under exceptional circumstance, independent crown fires that become decoupled from surface
fuels may also occur [7]. Wildfire in P. halepensis stands often show potential for developing active
crown fires beyond extinction capacity [8]. The high rate of spread and intensity of crown fires in
P. halepensis stands, combined with long range spotting are characteristics that pose a serious threat to
life and property [9].

In order to understand potential wildfire behavior, mathematical models have been developed
to account for the various interacting processes that drive fire behavior [10]. In North America and
Europe, different models that link [11,12] surface and crown fire rate of spread predictions with [7,13]
crown fire transition and propagation criteria have often been used [14], including BehavePlus (USDA,
Missoula, MT, USA) [15], FlamMap (USDA, Missoula, MT, USA) [16] or NEXUS (USDA, Missoula, MT,
USA) [17].

In these semi-empirical approaches, the onset of a crown fire is defined by the transition of a
wildfire from surface to canopy fuels. This transition occurs when the surface fire intensity attains or
exceeds a certain critical surface intensity (I0), which, in turn, is determined by the interaction between
foliar moisture content (FMC) and the canopy base height (CBH) [7]:

I0 = (0.01 CBH (460 + 25.9 FMC))1.5 (1)

After the transition from the surface to the canopy layer, a certain canopy bulk density (CBD)
is needed to develop and maintain a solid flame front. If this CBD is not reached, the crown fire
will passively torch isolated trees (or groups of trees), but it will not spread across the canopy [17].
Consequently, for active crown fire development, a critical minimum spread rate (R0), which depends
on CBD, is needed to maintain continuous crowning [12]:

R0 =
3

CBD
(2)

Characterization of the fuel structure and its relevance for fire behavior has been the topic of much
research [18]. Variations in live fuel moisture are often taken into account, although some discussions
are still active on its role in fire propagation [19]. However, an aspect that has seldom been considered
is the role of pre-programmed needle senescence, despite its potential to increase crown fire intensity
and severity [19,20].

Needle lifespan in P. halepensis is approximately three years, and three-years-old needles typically
become dry and senesce towards the end of June or start of July (Figure 1A). This is immediately before
the peak of the fire season in the Western Mediterranean basin, which often occurs in the first half of
July [21] (Figure 1B). Consequently, pre-programmed needle senescence (a developmental process that
allows nutrient recycling in old leaves before shedding) potentially leads to one-third of the canopy
(that is, all 3 years-old leaves) being dry right before the peak fire season [22].

Some studies have addressed the role of FMC on fire behavior [23]. Others have addressed how
canopy drying, following bark beetle attacks, for instance, impacts fire behavior [24–26]. However,
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to the best of our knowledge, the effects of partial canopy drying after needle senescence on crown
flammability have not been quantified so far [19,20,22].Forests 2020, 11, 1054 3 of 14 

 

Figure 1. (A) Needle senescence in P. halepensis affecting the old leaves cohort (3-years-old) typically 

occurs between the end of June or July, and it drastically modifies the moisture of the canopy. Photo 

by Carles Arteaga. (B); Temporal pattern of long-term average (1968–2015) burned area (black, all 

fires; red, crown fires) in the Pinus halepensis forests of the Mediterranean regions of Spain. (Data from 
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Food). 
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Figure 1. (A) Needle senescence in P. halepensis affecting the old leaves cohort (3-years-old) typically
occurs between the end of June or July, and it drastically modifies the moisture of the canopy. Photo by
Carles Arteaga. (B); Temporal pattern of long-term average (1968–2015) burned area (black, all fires;
red, crown fires) in the Pinus halepensis forests of the Mediterranean regions of Spain. (Data from the
Estadística General de Incendios Forestal provided by the Ministry of Agriculture, Fishing, and Food).

Temporal and spatial coincidence of low foliar moisture content and high canopy bulk density
creates optimal conditions to increase the probability of crown fire occurrence as well as their intensity
and severity. High-intensity crown fires burn canopies by convection, leading to widespread defoliation
and, consequently, plant death. Preprogrammed old needle senescence may thus enhance Aleppo pine
mortality rates after wildfires, if it does affect intensity fire behavior [19]. However, this effect only
lasts for a few weeks, until leaf dropping [20]. After shedding of senesced needles, the probability
of crown fire activity declines as the weighted foliar moisture content increases and the canopy bulk
density decreases. Consequently, surface fires may become more intense after needle shedding due to
an increase in surface fuel loads, but surface fires seldom reach intensities beyond extinction capacity.

It is currently unknown why the brunt of the fire season occurs in early July in the Western
Mediterranean Basin [19]. During this time, FMC in Mediterranean trees, shrubs, and grasses is near
its seasonal maximum [27] and fires occurring in late August, under much lower FMC, often burn at
lower intensity [19]. Aleppo pine needle senescence could thus offer at least a partial explanation to
such conundrum.

Here we seek to quantify the potential effects of needle senescence on fire behavior in P. halepensis
stands. We simulated four scenarios that recreated the major annual physiological and structural
changes in relation to needle senescence (that is, before, during and after leaf senescence and later
in the year after the onset of litter decomposition in the autumn). Each of the four simulations was
ran for two highly contrasting P. halepensis fuel structures (representatives of very high and very low
crown fire likelihood) that are dominant in Valencia (E Spain), one of the most fire-prone regions
in Mediterranean Spain. We wanted to test the potential effects of needle senescence on crown and
surface fire behavior in contrasting stand types, and also to establish its dependence and interactions
with wind speed and dead fuel moisture, two well-known drivers of fire behavior. More specifically,
we wanted to test: (i) whether needle senescence increases the likelihood of transition from surface to
crown fire; (ii) whether once the transition to crown fire has occurred, the likelihood to develop an
active crown fire increases with needle senescence in widely contrasting stand structures; (iii) whether
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needle senescence increases mortality rates after wildfire activity; and (iv) what is the importance of
the effect of needle senescence on crown fire likelihood relative to wind speed and dead fuel moisture.

2. Materials and Methods

2.1. Senescence Scenarios

Aleppo pine presents a tetracyclic annual shoot elongation process. Once senescence is active
(end of June-beginning of July) needles have developed two thirds of the total annual elongation in
current year shoots [28]. Thus, considering a three-year needle life span, pre-programmed senescence
leads to 1/3.6th, or 28%, of the dried canopy (or dead mass fraction, fd) if all 3 years old needles senesce
at once. To simulate annual canopy physiological and structural changes caused by needle senescence,
four phenological scenarios were created. The first one, scenario-A (Table 1), represents spring leaf
sprout. At this time there is an increase in canopy bulk density, canopy cover and foliar moisture
content. Scenario-B (Table 1) represents the time of needle senescence, when about 28% of the canopy
is composed of dead matter at the beginning of July. To introduce these changes in FMC, canopy live
matter moisture (Ml) and canopy dead matter moisture (Md) were weighed (Mw) considering fd as
in [29]:

FMC = Mw = fdMd + (1− fd)Ml (3)

Table 1. Parameters values in shrub and forest fuel types for each scenario: A, before senescence; B,
during senescence; C, after shedding; D, in autumn.

Forest (TU-3) A B C D

Canopy Cover (%) 35 35 35 35
Canopy Height (m) 8 8 8 8
Canopy Base Height (m) 1.5 1.5 1.5 1.5
Canopy Bulk Density (kg/m3) 0.15 0.15 0.1 0.1
Fine Fuel Load (t/ha) 2.5 2.5 3 2.5
1-h Dead Surface Fuel Moisture (%) 6 5 5 9
10-h Dead Surface Fuel Moisture (%) 7 6 6 10
100-h Dead Surface Fuel Moisture (%) 8 7 7 11
Foliar Moisture Content (%) 105 74 100 100

Shrub (SH-9) A B C D

Canopy Cover (%) 100 100 100 100
Canopy Height (m) 5 5 5 5
Canopy Base Height (m) 1 1 1 1
Canopy Bulk Density (kg/m3) 0.22 0.22 0.15 0.15
Fine Fuel Load (t/ha) 10 10 10.7 10
1-h Dead Surface Fuel Moisture (%) 6 5 5 9
10-h Dead Surface Fuel Moisture (%) 7 6 6 10
100-h Dead Surface Fuel Moisture (%) 8 7 7 11
Foliar Moisture Content (%) 105 74 100 100

Scenario-C simulates the time when needles have been shed, which reduce canopy bulk density.
The reduction of dry needles in the crown increases weighted foliar moisture content but needle
shedding increases surface fine fuel loads. Finally, scenario-D (Table 1) corresponds to autumn and
winter periods when surface fine fuel load decreases due to litter decomposition.

2.2. Stand Structures and Fuel Features

Forest structure and fuel loads play a critical role in fire behavior and crown fire susceptibility.
We obtained fuel structure data from the fuel models developed by the Fire Service in Valencia,
Spain [30]. The Valencian fuel model catalogue adapts the models from Scott and Burgan [31] to E



Forests 2020, 11, 1054 5 of 14

Spain conditions. We used models SH-9 (shrubland from now on; Tables 1 and 2) and TU-3 (forest from
now on; Tables 1 and 2). We will refer to SH-9 as a shrub fuel type, in the sense that it is short stature
vegetation, but we note that it has two separate fuel layers (canopy fuels begin at 1 m above ground).
It represents stands with a low proportion of large trees, extremely high tree density, and horizontal
fuel continuity. In contrast, TU-3 is a forest fuel type representing stands with two separated layers,
high proportion of large trees, moderate tree density and moderate to low vertical and horizontal
fuel continuity. Both models are considered as dynamic fuels, thus live herbaceous fuels become
dead depending on their moisture content [31]. For initial model simulations, dead fuel moisture for
scenarios A, B, and C were established according to the low moisture values recorded after heat wave
periods [32,33]. As scenario-D represents autumn, dead fuel moisture values are higher due to more
benign conditions. We obtained Ml from [34] and Md from [33]. Additionally, in order to understand
the effect of leaf senescence relative to other drivers of fire behavior, we conducted a sensitivity analysis
on how different values of 1-h dead surface fuel moisture affected fire behavior. Canopy bulk density,
canopy height, and canopy base height were established according to [35]. Changes in canopy bulk
density were established considering a reduction of 28% among scenarios before and after senescence,
as previously argued. Canopy base height values were considered stable among scenarios because
the differences in height between 3 and 2 years-old needles are negligible (<10 cm) for the purpose of
these simulations.

Table 2. Fuel models SH-9 (shrub) and TU-3 (Forest) parameters values.

Fuel Parameters Fuel Model TU-3 Fuel Model SH-9

1-h Dead Fuel Load 2.5 t/ha 10 t/ha
10-h Dead Fuel Load 0.34 t/ha 5.5 t/ha
100-h Dead Fuel Load 0.56 t/ha 0 t/ha
Live Herbaceous Fuel Load 1.5 t/ha 3.5 t/ha
Live Woody Fuel Load 2.5 t/ha 16 t/ha
1-h SAV Ratio 59.05 cm2/cm3 24.60 cm2/cm3

Live Herbaceous SAV Ratio 52.49 cm2/cm3 59.05 cm2/cm3

Live Woody SAV Ratio 45.93 cm2/cm3 49.21 cm2/cm3

Fuel Bed Depth 40 cm 134 cm
Dead Fuel Moisture of Extinction 30% 40%
Dead Fuel Heat Content 18,622.3 kJ/kg 18,622.3 kJ/kg
Live Fuel Heat Content 18,622.3 kJ/kg 18,622.3 kJ/kg

2.3. Fire Behavior Modelization

Wildland fire behavior simulation was done using BehavePlus6 [15] and crown fire was calculated
using Scott and Reinhardt [17] as input option. The input values used in each stand type and each
scenario are detailed in Tables 1 and 2. Slope steepness was set to 0% and 10 m open wind speed was
established in a range from 0 to 30 km/h. Final figures were created using R.3.6.1. (Lucent Technologies,
Murray Hill, NJ, USA) [36]. Assessment of fire severity were performed using the lethal thresholds
(LD) developed by [19]. Thus, a crown fraction burned (CFB) between 0.4–0.8 eliminates 50% of
the population (LD50), and CFB higher than 0.8–0.9 completely eliminates the population (LD100).
When CFB remains below 0.4 CFB mortality is negligible (LD0) [19].

2.4. Dead Mass Fraction Sensitivity Analysis

We also conducted a sensitivity analysis to assess how a varying proportion of fd affected the
transition ratio from a surface to crown layer. This is important because, assuming that the biomass of
each cohort is constant, our previously estimated 28% of fd would constitute a maximum potential
value: needle senescence may start earlier in the year such that different values of fd may occur when
the fire season starts. Surface fire intensity was established from the mean surface intensity across
scenarios with an intermediate wind speed of 15 km/h.
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3. Results

We observed that maximum fire intensity and severity occurred in scenario-B under all wind
speeds and fuel types (Table 3). Fire intensity and severity values were higher in the shrub than in the
forest fuel model. The highest estimated value of Rate of Spread (ROS) in scenario-B for the forest fuel
type was 14.6 m/min at a wind speed of 30 km/h. This value was between 2 and 3 times higher than the
peak ROS in the other scenarios (Figure 2A). In the shrub fuel type, the highest ROS was 17.7 m/min,
a value that was also reached in scenario-B with a wind speed of 30 km/h. ROS in scenario-B in the
shrub fuel type was at least 1.4 times higher than in other scenarios (Figure 3A). The highest fire line
intensity reached in scenario-B was 5924 kW/m in the forest stand and 17,179 kW/m in the shrub stand.
Peak fire line intensity in scenario-B was 2–3 times higher in the forest fuel type and 1.5 times higher
in the shrub fuel type compared to other scenarios (Table 3). The highest flame length occurred in
scenario-B and took values of 8.7 m in the forest stand and 17.7 m in the shrub stand. Flame length
remained between 2–3.3 m for the forest stand and between 10.1–14.4 m in the shrub stand in the other
three scenarios (Table 3).

Table 3. Simulated Rate of Spread (m/min), Fire Line Intensity (kW/m), Flame Length (m) and Crown
Fraction Burned for each scenario (A, B, C, D) under four 10 m open wind speeds (0, 10, 20, 30 km/h).

FOREST (TU-3) Wind Speed (km/h) A B C D

Rate of Spread (m/min)

0 0.3 0.5 0.4 0.3
10 0.9 1.2 1.1 0.9
20 1.7 5.1 2.6 1.7
30 5.8 14.6 6.9 3.9

Fire Line Intensity (kW/m)

0 48 74 69 45
10 130 200 183 121
20 259 1384 462 240
30 1393 5924 1585 653

Flame Length (m)

0 0.5 0.6 0.5 0.4
10 0.7 0.9 0.9 0.7
20 1 3.3 1.6 1
30 3.3 8.7 3.6 2

Crown Fraction Burned

0 0 0 0 0
10 0 0 0 0
20 0 0.35 0.06 0
30 0.30 0.81 0.32 0.13

SHRUB (SH-9) Wind Speed (km/h) A B C D

Rate of Spread (m/min)

0 0.7 1 0.8 0.7
10 2.1 3.1 2.2 1.8
20 5.7 8.6 5.5 4.4
30 12.6 17.7 11.6 9.1

Fire Line Intensity (kW/m)

0 560 765 586 490
10 1752 2615 1679 1330
20 5208 8228 4510 3402
30 12,562 17,179 10,074 7372

Flame Length (m)

0 1.8 2.2 1.9 1.7
10 3.9 5.1 3.8 3.2
20 8.0 10.9 7.3 6
30 14.4 17.7 12.4 10.1

Crown Fraction Burned

0 0.13 0.19 0.1 0.08
10 0.34 0.44 0.27 0.23
20 0.63 0.79 0.49 0.43
30 0.95 1 0.75 0.65
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Figure 2. (A) Rate of Spread (m/min) in each scenario as a function of 10 m open wind speed in forest
stands (TU-3 fuel model type). Dotted lines refer to surface fires, solid lines to passive crown fires.
(B) Crown Fraction Burned values as a function of 10 m open wind speed (km/h) and 1-h dead surface
fuel moisture (%) for each scenario: (A), before senescence; (B), during senescence; (C), after shedding;
(D), in autumn.
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Figure 3. (A) Rate of spread (m/min) in each scenario as a function of 10 m open wind speed in the
shrub stand (SH-9 model type). Solid lines to passive crown fires and dot-dash lines to active crown
fires. (B) Crown Fraction Burned as a function of 10 m open wind speed (km/h) and 1-h dead surface
fuel moisture (%) for each scenario: (A), before senescence; (B), during senescence; (C), after shedding;
(D), in autumn.
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The transition from surface to crown fire in the forest stand occurred with wind speeds higher
than 11 km/h in scenario-B. For scenarios A, C and D, the wind speed thresholds necessary for crown
fire development were 25, 18 and 26 km/h, respectively. However, it is important to note that we
only observed a transition to passive crown fire development, not to active crown fires, in the forest
fuel model TU-3. In the shrub fuel model SH-9, passive crown fires developed under all wind speed
conditions. Active crown fire only developed in scenario-B, when wind speeds were larger than
25 km/h.

Regarding fire severity, crown fraction burned (CFB) values were always higher in scenario-B for
both fuel types and under all wind speed conditions (Figures 2B and 3B). The relative effect of fuel type
on CFB was higher in the forest stand than in the shrub stand since maximum CFB was six times larger
in scenario-B (0.81) than in scenario-D (0.13). Importantly, the effect on CFB varied markedly with
the moisture content of 1-h dead surface fuels. For instance, in the forest, a CBD leading to (LD100) in
the scenario-B occurred either under a wind speed of 25 km/h and a 1 h dead surface fuel moisture of
4% or with a wind speed of 30 km/h and 1-h dead surface fuel moisture of 10%. LD50 was similarly
reached with wind speeds above 15 km/h under minimum 1 h dead surface fuel moisture (4%). In the
remaining forest scenarios (scenarios A, C, and D), increasing wind speed and lowering 1-h dead
surface fuel moisture led to increases in CFB, but they always remained below LD50.

In shrublands (Figure 3B), at least some crown damage was recorded in all scenarios under any
wind speed and 1-h dead surface fuel moisture conditions. CFB values ranged from 1 in scenario-B to
0.65 in scenario-D under the highest wind speed, indicating important differences depending on fuel
phenology. Regarding lethal thresholds (LD), LD50 was reached in scenario-B, under a wind speed of
12 km/h when 1-h dead surface fuel moisture was at 12%, or under 8 km/h when 1-h dead surface fuel
moisture was at 4%. Further increases in wind speed in this scenario would lead to LD100. In the other
scenarios, LD50 was recorded under an intermediate wind speed of 20 km/h and under critical wind
speed conditions (30 km/h), LD100 also occurred in scenario A.

Finally, the sensitivity analysis on the effect of a varying fd on the transition ratio was only
performed in forest stands as critical transition to crown fires always occurred in the shrub fuel under
any wind speed. Our simulations indicated that the critical surface intensity to crown fire transition
under a wind speed of 15 km/h occurred with a minimum fraction of 0.17 of the canopy composed of
dead foliar fuels (Figure 4).
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on forest stands. Fire transition occurs when the transition ratio between the surface fire intensity
(250 kW/m) and critical surface intensity (I0, Equation (1)) becomes equal or higher than 1.
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4. Discussion

Our results suggest that Aleppo pine needle senescence significantly affects potential crown fire
behavior. Simulations showed important differences in wildfire intensity and severity due to the
physiological and structural changes caused by needle drying and shedding. However, the effect
of needle senescence on fire behavior differed depending on fuel type and its interaction with wind
speeds and 1-h dead surface fuel moisture. In other words, needle senescence by itself does not lead to
active crown fire, but its presence lowers the critical wind speeds and 1-h dead fuels moisture values
necessary to reach such transition point.

We observed stronger crown fire activity under scenario-B in both stand types (Figures 2 and 3).
This scenario represents the process of needle senescence leading to a few-weeks period typically
occurring towards the end of June or beginning of July [22], during which about one third of pine
stand canopy is composed of dry needles (Figure 1A). Spatial and temporal coincidence of low foliar
moisture content and high canopy bulk density favors the development of more intense and severe
crown fires at lower wind speed conditions, particularly for the shrub fuel type, where active crown
fires may develop only under needle senescence. These results indicate that needle senescence could be
a contributing factor to increasing fire intensity in Aleppo pine stands. Consequently, this mechanism
could partly explain why the peak in the burned area observed in the Western Mediterranean basin,
where fires predominantly affect P. halepensis, occurs in early July (Figure 1B).

We also observed that the relative effect of needle senescence was more noticeable in the forest
fuel model than in the shrub fuel model. This is likely due to the fact that baseline flammability in
shrublands is already very high: this fuel type presents a lower canopy base height, which reduces,
to some extent, the dependence of critical transitions to crown fire on foliar moisture (Equation (1)).
Increasing needle flammability in the shrubland stand would thus have, comparatively speaking,
a smaller relative effect for extreme fire behavior than on the forest stand. In fact, crown fires would
develop under any wind speed and canopy moisture in shrublands (Figure 3A). However, needle
senescence did increase the probability of active crown fires. That is, the development of active fires in
the shrubland stand only occurred under canopy senescence. These differences observed between fire
behavior in shrub and forest stands are consistent with other studies [5,37,38].

Needle senescence may influence crown fire behavior in at least two ways: affecting FMC and CBD.
In our forest stand simulation, we recorded that the wind speed necessary for crown fire development
decreased from 25 km/h to 10 km/h between scenarios A and B (Figure 1A) because of decreasing foliar
moisture from 105% to 74% (Table 1). A lower FMC reduces the influx of energy required to start the
ignition, because a smaller amount of water needs to be evaporated. Needle senescence may thus
enhance crown fire development, by reducing foliar moisture content and hence the critical surface
intensity threshold value at which surface fires become crown fires. Furthermore, as we observed in
the sensitivity analysis (Figure 4), the critical surface intensity to cause the transition from a surface fire
to the canopy layer occurred as the dead foliar fractions increased over 17%.

We need to acknowledge that the actual role of FMC in affecting the fire rate of spread is
currently being discussed. Some authors argue that the role of FMC is exaggerated in fire behavior
models because the high convective and radiative fluxes produced by the flame are several orders of
magnitude higher than the energy required to dry the fuel, which would render FMC inconsequent [23].
However, other studies consider that the effect of FMC as a driver of fire spread has actually been
underestimated [29,39]. Furthermore, empirical evidence across many biomes support that increases
in burnt area occur under decreasing FMC [40–43]. A full discussion on this issue would be out of
scope, and the reader is referred to a recent review of this issue for more details [19].

The effect of needle senescence on fire behavior was dependent on 1-h dead surface fuel moisture.
As we observed in Figures 2B and 3B, senescence effects interact with variation in 1-h dead surface fuel
moisture such that critical CFB values were reached in the senescence scenarios under low 1-h dead
surface fuel moisture values. As previously stated, fire behavior is more affected, in relative terms,
by the structural and physiological effects caused by needle senescence in forest stands compared to
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shrublands. Simulations showed that lethal thresholds varied from LD0, which indicates negligible
mortality in all forest scenarios, to LD100, which represents the death of the entire population in
scenario-B under a wind speed of 30 km/h (Table 3). These changes in tree mortality rates among
scenarios were also noticeable in shrublands, where simulations showed that LD100 occurred in
scenario-B after wind speeds as low as 21 km/h under low 1-h dead fuel moisture values. In the
other shrubland scenarios, LD100 only occurred in scenario-A, under a critical wind speed condition
of 30 km/h. Therefore, while needle senescence is, by itself, not enough to reach critical fire severity
thresholds, it lowers the need for critical wind speeds and 1-h dead fuel moisture values necessary to
reach LD50 or LD100.

We recognize that a problem with our study is the way in which the effects of needle senescence on
FMC were inputted into the model. We used a weighted average of FMC whereas, in reality, senesced
leaves may form a layer of fuel that is effectively independent of live FMC. Future research should
concentrate on building more realistic descriptions of needle arrangement such that fuel moisture
within a whorl can change with time. We conducted additional simulations considering only the CBD
of dead canopy fuels, but the resulting CBD (0.05 kg/m3 for forests and 0.07 kg/m3 for shrublands) was
not high enough to produce canopy fires (data not shown).

Another problem with our study lies on the limitations of fire modeling. Considering the complex
dynamics behind wildland fires processes, fire models are very simplified, and this could lead to
misleading predictions. Furthermore, considering climate change, it is difficult to predict extreme
fire conditions accurately. There is some anecdotal evidence that needle senescence enhances crown
flammability (M. Castellnou pers. comm.), but further work should confirm experimentally that needle
senescence does enhance canopy flammability.

An important yet unresolved aspect is whether needle senescence serves an evolutionary role.
It has been reported that pre-programmed needle senescence in the oldest cohort, at least in some
temperate and boreal conifers, increases as new leaves develop [44]. This would be a mechanism to
recycle nutrients from old leaves into new, developing leaves. In our case, needle senescence co-occurs
with the flush of current-year growth, and it could thus serve to support new needle growth. However,
needle senescence also occurs as summer drought stress is starting to be important. Consequently,
needle senescence could also serve as a water-saving mechanism that decreases transpirational area,
at the expense of a transient increase in flammability [22]. However, as climate change intensifies
summer drought and wildfire activity, needle senescence could turn maladaptive by enhancing
crown fire likelihood. Further efforts towards quantifying the phenology of needle senescence and
understanding its underlying drivers should be at the forefront of our research efforts.

We have shown that not considering needle senescence can lead to misleading predictions on
fire risk, potentially misestimating wildfire behavior in Aleppo pine stands and this could potentially
lead to the application of suboptimal forest and fire management activities. While simulations are
routinely performed in order to decide forest management and fire prevention operations, these
simulations could incorporate the role of needle senescence because it significantly lowers the threshold
for catastrophic fire behavior. To date, needle senescence effects may be underrated in fire behavior
simulations due to the relatively short period that it represents each year. However, they occur at a
critical time of the year and, as such, its cascading effects on fire behavior may be rather important, as
we have anticipated in this work.

An increased probability of extreme events has been forecasted for the next decades as a result
of global change. According to predictions, fire seasons may be longer and drier, thereby producing
more intense and severe wildfires [19]. Changes in fire regimes represent a challenge to fire-prone
species and ecosystems. Aleppo pine post-fire regeneration strategy can be hard-pressed if wildfires
return intervals become shorter than the time needed for trees to reach sexual maturity or to produce
enough serotinous cones [45]. Also, extremely high wildfire intensity can damage serotinous seeds
causing the decline of seedling recruitment and leading to populations collapse [22]. We can thus
expect important changes in ecosystem structure in the coming decades, which would have important
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interactions with changes in the fire regime. Furthermore, it would be relevant to simulate Aleppo
pine-woods responses to predicted future climate conditions for the different scenarios tested in this
study. A better understanding of pyrophysiology should, therefore, be at the forefront of our research.

5. Conclusions

We have shown evidence, for the first time to our knowledge, of enhanced crown fire behavior in
Aleppo pine driven by needle senescence through altered canopy structure and foliage in a period
that is coincidental with the brunt of the fire season. Regarding our initial questions, changes in
physiological and structural conditions following senescence enhance the probability of more intense
and severe crown fires development and concentrate extreme tree mortality rates in senescence
periods. Furthermore, in a fuel type with enough canopy bulk density, senescence effects may lead to
development of active crown fires. Finally, it is important to consider that senescence, by itself, may not
be enough to lead to extreme fire behavior. That is, needle senescence should be viewed as a contributing
factor that may favor extreme fire behavior when environmental conditions (e.g., high wind speed)
and 1-h dead surface fuel moisture are also at critical levels. We argue for further research to better
understand and quantify the drivers of needle senescence and its effects on fire behavior in the field.
A lack of consideration of this phenomenon in crown fire modeling systems may provide incomplete
predictions leading to the application of unsatisfactory forest and fire management activities.
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