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Summary

� Progress in high-throughput phenotyping and genomics provides the potential to under-

stand the genetic basis of plant functional differentiation. We developed a semi-automatic

methodology based on unmanned aerial vehicle (UAV) imagery for deriving tree-level pheno-

types followed by genome-wide association study (GWAS).
� An RGB-based point cloud was used for tree crown identification in a common garden of

Pinus halepensis in Spain. Crowns were combined with multispectral and thermal orthomo-

saics to retrieve growth traits, vegetation indices and canopy temperature. Thereafter, GWAS

was performed to analyse the association between phenotypes and genomic variation at 235

single nucleotide polymorphisms (SNPs).
� Growth traits were associated with 12 SNPs involved in cellulose and carbohydrate

metabolism. Indices related to transpiration and leaf water content were associated with six

SNPs involved in stomata dynamics. Indices related to leaf pigments and leaf area were associ-

ated with 11 SNPs involved in signalling and peroxisome metabolism. About 16–20% of trait

variance was explained by combinations of several SNPs, indicating polygenic control of mor-

pho-physiological traits.
� Despite a limited availability of markers and individuals, this study is provides a successful

proof-of-concept for the combination of high-throughput UAV-based phenotyping with

cost-effective genotyping to disentangle the genetic architecture of phenotypic variation in a

widespread conifer.

Introduction

The rapid development of genotyping and phenotyping tech-
nologies is narrowing the knowledge gap between genomics
and phenomics (Houle et al., 2010; Großkinsky et al., 2015).
Hundreds of individuals can be characterized with an ever-
growing number of genetic markers, covering large parts of
the genome. As a consequence, the amount of genome-wide
association studies (GWAS) seeking to understand the genetic
basis underlying phenotypic differentiation in plants has
increased exponentially (Lobos et al., 2017). Common garden
experiments, in which individuals from contrasting geographi-
cal origins grow under the same environmental conditions,
are often used in ecological studies to understand to what
extent individual differences are controlled by genetic effects

(McKown et al., 2014; Baison et al., 2019). Combining accu-
rate and rapid phenotyping with genomic scans in common
gardens can therefore result in an effective method to study
the genetic basis of adaptation in plant species (de Ville-
mereuil et al., 2016).

Efforts towards understanding the genetic basis of adaptation
in forest tree species have been limited by a lack of labour-sav-
ing phenotyping techniques and by a restricted amount of
molecular information. Genome-wide sets of molecular markers
are needed to gain information on the loci contributing to the
genetic architecture of complex traits (Grattapaglia & Resende,
2011). Because most traits are controlled by many loci with
small effects, a high density of loci is required to achieve a solid
accounting of phenotypic variation (Savolainen et al., 2007;
White et al., 2007). Once available for only a few model
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organisms, sets of molecular markers are now accessible for non-
model species such as forest trees (Khan & Korban, 2012;
Jaramillo-Correa et al., 2015).

Furthermore, the development of suitable phenotyping
approaches is limited by the costs associated with manual pheno-
typic measurements of anatomical and physiological traits. These
costs derive from the long life cycles of forest trees and the con-
siderable dimensions of adult individuals (Ludovisi et al., 2017).
As an alternative, unmanned aerial vehicle (UAV) imagery is
emerging as an effective high-throughput phenotyping tool to
indirectly infer variation in common garden experiments of forest
trees (Santini et al., 2019a). Based on specific wavelengths, UAV-
based multispectral imagery allows the calculation of vegetation
indices, which have been used as proxies to obtain information
about traits such as crown characteristics, leaf anatomy and
content of photosynthetic pigments in leaves (Santini et al.,
2019a,b). Additionally, water status and total transpiration in trees
can be inferred through thermal images (Ludovisi et al., 2017;
Santini et al., 2019a). Moreover, innovative techniques of pho-
togrammetry can be applied to RGB (red, green, blue) images to
obtain 3D reconstructions of trees. These techniques aim at the
automatic identification of single trees in forests and at estimating
growth parameters such as tree diameter or height (Nevalainen
et al., 2017). Therefore, high-resolution remote sensing data cou-
pled with efficient algorithms for automatic crown identification
represents a potentially powerful approach for fast and accurate
individual tree phenotyping (Wallace et al., 2016; Santini et al.,
2019a). In previous studies, we developed a UAV-derived pheno-
typing methodology that successfully detected adaptive variation
in leaf area, crown architecture, transpiration rate and photosyn-
thetic pigments in Pinus halepensisMill. (Santini et al., 2019a) and
Pinus nigra Arnold (Santini et al., 2019b). Here, we further devel-
oped and combined this methodology with genomic information
in a common garden of P. halepensis to evaluate the potential of
linking novel phenotyping technology with high-throughput
genotyping to identify candidate genes involved in adaptive differ-
entiation for a widespread forest species.

Aleppo pine (P. halepensis) is a drought-resistant species and
the most common conifer across the Mediterranean basin. Com-
mon garden experiments have revealed a wide differentiation
among populations in traits such as aerial growth (Schiller & Atz-
mon, 2009; Voltas et al., 2018), phenology (Klein et al., 2013),
water uptake patterns (Voltas et al., 2015), hydraulic conductiv-
ity (Tognetti et al., 1997) and reproductive effort (Climent et al.,
2008). With the goal of unveiling the genetic basis underlying
this differentiation, which remains largely unexplored, a set of
single nucleotide polymorphism (SNP) markers was developed
by Pinosio et al. (2014). Ruiz-Daniels et al. (2018, 2019) used
these markers to genotype natural populations, and detected sev-
eral SNPs putatively associated with adaptation to local condi-
tions. A limitation of these approaches derives from the complex
neutral genetic structure of this species (i.e. unrelated to local
adaptation), which has been shaped by past population dynamics
(Serra-Varela et al., 2017; Ruiz Daniels et al., 2018). The strong
genetic structure separating Western and Central-Eastern
Mediterranean populations, with further subdivisions within

each group (Ruiz Daniels et al., 2018), is prone to generate false
positive associations related to nonadaptive differentiation among
populations with divergent phenotypes, making the identification
of loci associated with phenotypic changes challenging (Yu et al.,
2006). Previous analyses performed in natural populations can be
complemented with common-garden information for the pur-
pose of identifying SNPs putatively involved in relevant adaptive
traits for this pine species by controlling for the effects of envi-
ronmental variation and neutral structure. In this regard, a pre-
liminary GWAS based on the set of SNPs developed by Pinosio
et al. (2014) and performed in a common garden has provided
the first insights into the genetic basis of variation in traits includ-
ing growth, reproduction, water use efficiency and wood
anatomy in Aleppo pine (Rodr�ıguez Quil�on, 2017).

In this study, we used P. halepensis populations grown in a
common garden as a model system to provide a novel approach
for high-throughput phenotyping of a suite of traits related to
tree morphology and physiology, which are seldom considered in
genotype–phenotype association studies. We aimed at deepening
the genetic control of these traits by combining phenotyping
through semi-automatic crown identification and multispectral
imagery with genotyping at the individual level. We hypothesized
that, for a species encompassing a large functional variability in
characteristics related to water and carbon economy, the genetic
basis of physiological and morphological variability is identifi-
able, at least in part, through high-throughput UAV imagery.
Specifically, the objectives of this study were to: develop a high-
throughput methodology for deriving tree-level information of
growth traits, together with vegetation indices and canopy tem-
perature; identify putative genes underlying the variation in such
traits, test for multigenic control of phenotypic variation and esti-
mate the proportion of phenotypic variation explained by geno-
types; and provide insight into the potential of combining UAV
imagery with genotypic information in disentangling adaptive
variation in forest species.

Materials and Methods

Study site and plant material

The study was carried out on adult individuals of Aleppo pine
growing in a common garden experiment in Altura
(39°49029ʹʹN, 00°34022ʹʹW, 640 m asl; Castell�on province, east-
ern Spain) (Supporting Information Fig. S1). Seeds from 56 nat-
ural populations of P. halepensis were collected in 1995 and
planted in a forest nursery in Spain (Table S1; Fig. S2). These
populations cover a large part of the species’ distribution range
and they are representative of the wide variety of environmental
conditions in which P. halepensis is currently found. For each
population, open-pollinated seeds were collected from 20–30
trees, spaced at least 100 m apart, and subsequently bulked into
population seedlots. This sampling strategy was implemented to
minimize genetic relatedness among the half-sib families and to
collect a representative amount of intrapopulation variability. In
1997, 1-yr-old seedlings were planted systematically (2.59 2.5 m
spacing) at the study site in experimental units consisting of
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linear plots of four individuals. Four replicates were established
following a Latinized row–column design for a total of 896 indi-
viduals (16 per population) tested in the trial. Height and diame-
ter at breast height (DBH) were ground-measured for all trees in
2013 (at age 16 yr).

UAV flights

Flights were performed at noon on 26 July 2016 (at age 19 yr)
using an octocopter (Mikrokopter OktoXL; HiSystems GmbH,
Moormerland, Germany) flying under remote control at
c. 100 m a.g.l. (above ground level). Tree crown cover fraction at
the trial was 65% (Santini et al., 2019a). A significant crown
overlapping was observed between neighbouring trees (Fig. S1).
To ensure high-quality image registration and an overlapping
between pictures of c. 80%, forward motion was kept to less than
5 m s�1 during flights. The duration of the flights was 10 min
and the total area covered was c. 0.6 ha, corresponding to the
extension of the common garden.

The UAV was equipped with three different cameras that were
mounted on a two-servo gimbal (MK HiSight SLR2; HiSystems)
nadir-looking in consecutive flights. First, a multispectral camera
(MCA12; Tetracam Inc., Chatsworth, CA, USA) was operated to
capture 15.6-megapixel calibrated-reflectance images at 10 wave-
lengths (450� 40, 550� 10, 570� 10, 670� 10, 700� 10,
720� 10, 840� 10, 860� 10, 900� 20, 950� 40 nm) in the
visible and near-infrared (NIR) regions of the spectrum. Second,
RGB images were obtained using a Mirrorless Interchangeable Lens
Camera (Lumix GX7; Panasonic, Osaka, Japan). Finally, an FLIR
thermal camera (Tau2 640; FLIR Systems, Nashua, NH, USA) was
used for the acquisition of thermal images. Further details on cam-
era calibration, validation of reflectance data and thermal data
retrieval are reported in Methods S1 and S2.

Image processing and crown identification

In previous studies, we used a manual approach to derive plot-
level phenotypic data from UAV imagery in this same trial (San-
tini et al., 2019a). Here, we developed a workflow, schematized
in Fig. 1, for the semi-automatic acquisition of tree-level pheno-
typic data. Two orthomosaics (one multispectral and one ther-
mal) were obtained from raw multispectral and thermal images
using the Agisoft PHOTOSCAN PROFESSIONAL software (Agisoft
LLC, St Petersburg, Russia). The spatial resolution of the multi-
spectral and thermal orthomosaics were 7 cm2 and 29 cm2 per
pixel respectively. The geographical coordinates of four ground
control points were obtained with 1-m accuracy using a GPS
device (Juno 5B; Trimble Inc., Sunnyvale, CA, USA) and were
used for georeferencing the orthomosaics.

RGB images were analysed through structure-from-motion
(SfM) photogrammetry in the software Agisoft PHOTOSCAN
PROFESSIONAL to obtain a georeferenced 3D dense point cloud of
the common garden, in which the height of each point was
expressed in metres above sea level. The software FUSION

(McGaughey, 2012) was used to classify vegetation and soil
points of the dense point cloud, and a digital terrain model

(DTM) was obtained thereafter (Fig. 2a). Subsequently, the
dense point cloud and the DTM were combined in FUSION to
obtain a normalized point cloud, in which the height of each
point is expressed in metres above the ground. Finally, we
obtained the canopy height model (CHM) from the normalized
point cloud using the function grid_canopy implemented in the
package LIDR (Roussel & Auty, 2018) of the R environment (R
Core Team, 2019) (Fig. 2b).

The CHM was used to identify treetops using an algorithm
based on local maximum filter (Popescu & Wynne, 2004) imple-
mented in the function tree_detection in the R package LIDR
(Roussel & Auty, 2018). The height of each treetop was retrieved
from the CHM as an imagery-derived estimation of tree height
(HUAV). Finally, single crowns were segmented (i.e. outlined) in
the CHM using the function mcws in the FORESTTOOLS package
(Plowright, 2018), which performs a watershed segmentation
(Meyer & Beucher, 1990) guided by the locations of the treetops
(Fig. 2b). Tree crown area was calculated as the projection of the
outlined crown on the ground. Crown area was considered as a
surrogate of DBH (Lockhart et al., 2005) (Fig. S3).

The accuracy of tree identification was visually checked in the
software QGIS (v.3.6; QGIS Development Team, 2019) and the
crowns of the misidentified trees were manually corrected
(Fig. 2c,d). The obtained georeferenced crown shapes were used
to identify the individual crowns from multispectral and thermal
orthomosaics; that is, by using the crown shapes as template
images corresponding to single trees, crowns were cropped from
the orthomosaics (Fig. S3). Therefore, two images of the crown
(one multispectral and one thermal) were retrieved for each of
the 806 living trees of the common garden (see Results section)
and used to calculate tree-level vegetation indices and canopy
temperature.

Vegetation indices and canopy temperature

We calculated 10 vegetation indices (Table 1) from multispectral
images for each pixel of every image, which corresponded to a
particular tree crown. An average value was obtained afterwards
for each of the indices per image (tree), resulting in individual
tree data. Indices related to leaf area were calculated including the
normalized difference vegetation index (NDVI), the optimized
soil adjusted vegetation index (OSAVI), the renormalized differ-
ence vegetation index (RDVI) and the enhanced vegetation index
(EVI). Additionally, we also calculated the modified chlorophyll
absorption reflectance index (MCARI) and the transformed
chlorophyll absorption ratio index (TCARI). The latter indices
are related to both leaf area and Chl content (Daughtry, 2000).
The ratio between TCARI and OSAVI (TCARI/OSAVI index)
was calculated as a better estimate of Chl content, that is free of
leaf area effects (Zarco-Tejada et al., 2004). Furthermore, we cal-
culated the carotenoid reflectance index 2 (CRI2), the antho-
cyanin reflectance index 2 (ARI2) and the water band index
(WBI) to investigate other photosynthetic pigments and water
content in needles. Finally, we used thermal images to retrieve
crown-level estimates of canopy temperature. A detailed descrip-
tion of vegetation indices is available in Methods S3.
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Genotyping

A subset of 375 individuals belonging to 28 out of the 56 tested
populations (Table S1; Fig. S2) were genotyped in a previous
study (Pinosio et al., 2014; Ruiz Daniels et al., 2018). For this
purpose, 1-yr-old needles were collected from the top third part
of the crown in July 2013. After DNA extraction, the individuals
were genotyped using two sets of molecular markers. The first set
consisted of eight nuclear simple sequence repeat (SSR) loci, and
was used to assess both population structure and relatedness

between individuals (i.e. kinship matrix). A detailed description
of sample collection and SSR amplification is reported in Ruiz
Daniels et al. (2018).

The second set comprised 294 SNPs included in loci derived
from transcriptomes of P. halepensis evaluated in their responses
to fire, as well as from resequenced loci first identified in loblolly
pine (Pinus taeda) and identified from previous studies as candi-
dates involved in adaptation of the latter species (Pinosio et al.,
2014). This panel of markers thus comprised candidate genes
related to wood anatomy, growth, phenology and, also, to a wide

Fig. 1 Flowchart showing the different steps followed to carry out the study of association genetics in Pinus halepensis using red, green, blue (RGB),
multispectral and thermal imagery retrieved with an unmanned aereal vehicle (UAV) as phenotyping tools.

(a)

(c) (d)

(b)

Fig. 2 (a) Digital terrein model and (b)
canopy elevation model of the common
garden of Pinus halepensis obtained through
structure-from-motion analysis of red, green,
blue (RGB) images. The correctly identified
treetops (TTOPS, red dots), the false positive
tree tops (i.e. no trees identified as trees;
TTOPS_FP, light blue dots) and the false
negative treetops (i.e. trees not identified;
TTOPS_FN) are plotted on the canopy
elevation model together with the
segmented crown shapes (red polygons). An
area of the trial (black square) has been
enlarged to show the difference between
crown shape before (c) and after (d) manual
correction of the misidentified treetops.
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range of responses to abiotic stresses such as drought, cold and
oxidative stress (Methods S4). This second set was used to iden-
tify genotype–phenotype associations.

Statistical analyses

Phenotypic data To validate the image-derived estimations of
growth traits, HUAV and crown area were compared by means of
simple correlations to ground-based measurements of height and
DBH obtained in 2013. To remove the effects of heterogeneous
growing conditions on phenotypic records, tree-level estimates of
HUAV, crown area, vegetation indices and canopy temperature
were subjected to mixed-effects linear models. ANOVAs con-
sisted of column and replicate as fixed terms and column by repli-
cate interaction, row nested to replicate, and row nested to
replicate by column interaction as random terms. The tree-level
residuals of this model were individuals’ phenotypic data which
retained only genotypic variation (i.e. they were largely free of
environmental effects, which were accounted for by trial design).
This dataset was subsequently used for genotype–phenotype asso-
ciation analyses (see the ‘GWAS’ section in Material and Meth-
ods), and was also used as input for a principal component
analysis (PCA), to summarize the information retrieved by vege-
tation indices and to interpret tree-level relationships among
traits. To this end, the loadings of HUAV, crown area, vegetation
indices and canopy temperature were plotted for the first two
components of the PCA. Simple correlations were also calculated
among phenotypic variables.

SSR data Individual genotypes at SSR loci were used to calculate
relatedness between individuals. For this, a matrix of kinship
between each pair of individuals was obtained from SSRs with the
software SPAGEDI 1.3 (Hardy & Vekemans, 2015) using the kin-
ship coefficient developed by Loiselle et al. (1995). In addition, the
genetic structure of populations was inferred using the Bayesian
clustering method implemented in STRUCTURE (Pritchard et al.,
2000). We ran STRUCTURE varying the numbers of possible genetic
clusters (K) from one to 10, and each K was replicated 10 times.
Each run consisted of 19 105 burn-in iterations and 19 106 data
collection iterations. The different runs for the same K were then
averaged using the software CLUMPP (Jakobsson & Rosenberg,
2007). The most likely K was selected calculating an empirical

statistic, DK, based on the second derivative of the likelihood of K
(Evanno et al., 2005). In addition, the genetic structure obtained
through Bayesian clustering was evaluated with an independent
approach. For this, we conducted a principal coordinates analysis
(PCoA) on a matrix of pairwise genetic distances (G 0

ST) between
populations, and the first two components were plotted to summa-
rize relationships between populations. Both the calculation of
genetic distances and PCoA were carried out using the program
GENALEX (Peakall & Smouse, 2006).

GWAS A GWAS was performed to test for the association
between genotypes at single loci and each phenotypic trait (i.e.
HUAV, crown area, canopy temperature and vegetation indices).
The residuals obtained through ANOVA (as phenotypes) were
associated with genotypes at 235 SNPs out of the original 294.
These 235 SNPs were those showing high-quality genotypes and
a frequency of the minor allele > 0.05. A total of 375 individuals,
for which both genotypic and phenotypic data were available,
were used for this analysis.

A mixed-effects linear model (MLM) was fitted independently
for all pair combinations of SNPs and phenotypic traits following
the procedure of Yu et al. (2006) implemented in TASSEL 5.0
(Bradbury et al., 2007). The probability of membership of each
individual to each genetic cluster detected from clustering analy-
sis (see Results section) was included to avoid false positive associ-
ations related to large-scale genetic structure. Moreover, the
kinship matrix was also included in the model to control for
finest genetic structure (Yu et al., 2006). After the MLMs were
fitted, a correction for multiple testing was performed on the P-
values using the false discovery rate method (Storey & Tibshiri-
ani, 2003) implemented in the R QVALUE package (Storey et al.,
2019).

SNP loci for which significant associations emerged with phe-
notypic traits were annotated from homology with other plant
species as follows. First, the 200 bp sequence in which the SNPs
where originally identified (Pinosio et al., 2014) was used as
query in the BLASTN tool. The best target sequence was subse-
quently used as query in BLASTX. The best match from BLASTX

was retrieved to obtain the annotation of the SNPs. The result of
BLASTN was also used to identify the effect of polymorphisms on
proteins. For this, the 200 bp sequence was aligned with the
sequence of the best match derived from BLASTN. The sequence

Table 1 Vegetation indices (VIs) considered in this study.

Index Descriptor Wavelengths Formula Reference

NDVI Leaf area Red, NIR (R840 – R670)/(R840 + R670) Rouse et al. (1974)
OSAVI Leaf area Red, NIR (R840 – R670)/(R840 + R670 + 0.16)91.16 Rondeaux et al. (1996)
RDVI Leaf area Red, NIR (R840 – R670)/(R840 + R670)

1/2 Roujean & Breon (1995)
EVI Leaf area Blue, red, NIR 2.59(R840 – R670)/[(R840 + 69R670 – 7.59 R450) + 1] Huete et al. (2002)
MCARI Leaf Chl content; leaf area Green, red, NIR [(R700 – R670)-0.29(R700 – R550)]9(R700/R670) Daughtry (2000)
TCARI Leaf Chl content; leaf area Green, red, NIR 39(R700 – R670) – 0.29(R700 – R550)9(R700/R670) Haboudane et al. (2002)
TCARI/OSAVI Leaf Chl content Green, red, NIR – Haboudane et al. (2002)
ARI2 Anthocyanin content Blue, NIR R8409(1/R550 – 1/R700) Gitelson et al. (2001)
CRI2 Carotenoid content Blue, NIR 1/R550 – 1/R700 Gitelson et al. (2002)
WBI Water content NIR R900/R950 Pe~nuelas et al. (1993)

R indicates the reflectance in a single wavelength (in nm). NIR, near infra-red.
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derived from this alignment was then translated to proteins based
on the GenBank information. The software DNASP 6 (Rozas
et al., 2017) was used to check if the SNPs were located in a non-
coding or coding region and, in the latter case, the resultant
change in the amino acids sequence (synonymous/non-synony-
mous).

Multilocus association tests GWAS tests for significant contri-
butions of a single locus to trait variation, but it does not provide
an estimate for the total number of loci contributing to it. Alter-
natively, the number of SNPs explaining trait variation and the
overall phenotypic variance explained by combinations of SNPs
were estimated using the multilocus mixed model (MLMM)
approach proposed by Segura et al. (2012). This approach con-
sists of a stepwise mixed-model regression with forward inclusion
of SNP markers. Before the stepwise analysis, a null model is cal-
culated by incorporating all the possible SNPs, the kinship matrix
and the genetic structure. The variance is then partitioned into
genetic variance (i.e. explained by the kinship matrix, the popula-
tion structure and the SNPs) and residual variance. At each step
of the stepwise regression, the SNP with the lowest P-value is
incorporated into the model, and the P-values of the other SNPs
are recalculated, as well as the explained genetic and residual vari-
ance. The stepwise regression is terminated when the explained
genetic variance reaches a value proximal to that of the null
model (i.e. incorporating all the SNPs). We used the extended
Bayesian information criterion (eBIC; Chen & Chen, 2008) to
select the model that best fitted our data among the different
steps of the MLMM. The SNPs included as cofactors and the
percentage of variance explained (PVE) were recorded for the
best-fitting model. An MLMM was performed for each pheno-
typic trait analysed in the GWAS.

Data availability

Individual genotypic data are available at the Dryad repository
(https://datadryad.org/stash/dataset/doi:10.5061/dryad.pt3b
974). Phenotypic data will be made available at a Mendeley
repository.

Results

UAV-derived individual crown delineation

A total of 736 trees (92%) were successfully identified through
automatic canopy segmentation, while 72 trees were not recog-
nized by the segmentation algorithm and were manually identi-
fied. There were also 13 cases of false tree identification.
Altogether, 806 georeferenced crown shapes (discarding dead
trees) were obtained (Fig. 2).

Canopy segmentation and PCA analysis

Based on the detected treetops and tree crowns, individual
records of HUAV, crown area, vegetation indices and canopy tem-
perature were obtained for the 806 individuals of the common

garden (Fig. S4). Mean HUAV and crown area among trees were
5.80� 1.04 m and 6.52� 1.99 m2 respectively (mean� SD).
HUAV correlated with ground-based height measurements at the
tree level (r = 0.85, P < 0.001), indicating a reliable image-
derived estimation of tree height. Crown area correlated with
ground-measured DBH (r = 0.70, P < 0.001) (Fig. S5).

The PCA loadings summarized the relationships among vege-
tation indices, canopy temperature, HUAV and crown area
(Fig. 3). Simple correlations between traits are reported in
Table S2. Indices related to leaf area (i.e. NDVI, RDVI and
OSAVI) grouped together in the plot of loadings, and they were
unrelated to TCARI/OSAVI (informative of Chl content).
MCARI and TCARI (indicative of both leaf area and Chl con-
tent) and EVI (indicative of leaf area) were grouped in between
the other leaf area indices (NDVI, OSAVI and RDVI) and
TCARI/OSAVI (Fig. 3; Table S2). WBI (informative of water
content), ARI2 (informative of anthocyanin content) and CRI2
(informative of carotenoid content) were less well explained by
the first two PCA dimensions and were negatively associated with
TCARI/OSAVI. Canopy temperature was negatively associated
with HUAV and crown area, which, in turn, were positively
related to indices describing leaf area (Table S2). However,
canopy temperature, HUAV and crown area were poorly repre-
sented in the first two axes of the PCA (Fig. 3).

Fig. 3 Plot of the loadings of the first two PCA axes describing the
relationships between unmanned aereal vehicle (UAV)-derived growth
traits, vegetation indices and canopy temperature in the common garden
of Pinus halepensis. NDVI, normalized difference vegetation index;
OSAVI, optimized soil adjusted vegetation index; RDVI, re-normalized
difference vegetation index; EVI, enhanced vegetation index; MCARI,
modified chlorophyll absorption reflectance index; TCARI, transformed
chlorophyll absorption ratio index; CRI2 carotenoid reflectance index 2;
ARI2, anthocyanin reflectance index 2; WBI, water band index; T, canopy
temperature; HUAV, UAV-retrieved tree height.
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Neutral genetic data

The Bayesian clustering performed on SSR genotypes indicated
that the most probable number of clusters was two (Fig. S6). In this
scenario, Western Mediterranean populations comprising individu-
als from the Iberian Peninsula and the Balearic islands were sepa-
rated from Central–Eastern Mediterranean ones (i.e. Greek, Italian
and Tunisian) (Fig. 4). One Tunisian population showed a high
degree of admixture. Possible clustering also emerged at K = 4 or
K = 7, but with a lower probability than the K = 2 scenario
(Fig. S6). In addition, considering four or seven genetic clusters did
not result in clear geographical distinction between genetic groups.
The scenario with two main genetic clusters was confirmed by
PCoA performed on a matrix of population genetic distances
(Fig. S7). The first two axes of the PCoA identified a clear cluster-
ing in the two above-mentioned groups. The scenario with two
main genetic clusters also agreed with previously reported evidence
(Ruiz Daniels et al., 2018). Probabilities of individual assignment
to the two clusters at K = 2 were therefore used for correcting geno-
typic–phenotypic associations and to avoid false positives.

GWAS

GWAS revealed 12 significant associations between SNPs and
growth traits (i.e. HUAV and crown area) with P < 10�3 (Table 2).
These associations were significant also after correction for multi-
ple testing (q < 0.05). HUAV was associated with 10 SNPs, which
individually explained between 5% and 10% of phenotypic vari-
ance. Two SNPs were associated with crown area, each explaining
c. 5% of the phenotypic variance.

Sixteen significant associations emerged between SNPs and veg-
etation indices (Table 2). Among those, seven associations

occurred with indices related to leaf area, five with WBI (indicative
of leaf water content), two with CRI2 (indicative of carotenoid
content) and one with ARI2 (indicative of anthocyanin content).
Most associations were also significant (q < 0.05) or marginally sig-
nificant (q < 0.1) after correction for multiple testing, with the
exception of the SNP associated with ARI2 (q = 0.14). These asso-
ciations explained individually a small proportion of phenotypic
variance (range 3.5–5.5%). No associations emerged with
TCARI/OSAVI (indicative of Chl content). Finally, one SNP was
associated with canopy temperature, explaining c. 4% of the phe-
notypic variance. However, this association was not significant
after correction for multiple testing (q = 0.11).

Some SNPs were associated with more than one trait
(Table 2), as follows: SNP 91 was associated with EVI (indicative
of leaf area) and WBI (indicative of leaf water content), SNP 108
was associated with HUAV, EVI and WBI, SNP 133 was associ-
ated with HUAV and WBI, SNP 241 was associated with EVI and
MCARI, and, finally, SNP 273 and SNP 350 were both associ-
ated with HUAV and EVI.

The majority of SNPs for which significant associations
emerged were annotated in known genes (Table 3; Table S3). For
some of the annotated markers, it was possible to retrieve the
molecular and biological functions of the homologous protein.
In most cases, however, SNPs were located in noncoding regions
or resulted in synonymous polymorphisms (Table S3).

Multilocus association test

The multilocus association test performed through MLMM
revealed that combinations of the 235 SNPs explained a relatively
high proportion of the phenotypic variance of several traits
(Table 4). Some, but not all, of the SNPs identified by the single-

(a)

(b)

Fig. 4 (a) Bar plot showing results of the
assignment test with K = 2 for the 375
individuals genotyped in the common garde
of Pinus halepensis. Each individual is
represented by a vertical line divided into two
coloured segments representing the
probabilities that the individual is assigned to
the group comprising Western (in red) or
Central-Eastern (in blue) Mediterranean
populations. Population tags are reported in
Supporting Information Table S1. (b) Pie
charts showing the percentage of assignment
to the two groups in each population. The
charts are plotted on the actual geographical
coordinates of populations.
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locus association test were present in the multilocus association
models. Notably, a combination of 10 and nine SNPs explained
18% and 20% of the phenotypic variance of EVI (related to leaf
area) and WBI (related to leaf water content) respectively. For
HUAV, 16% of the phenotypic variance was explained by a combi-
nation of only two SNPs, both identified also by GWAS. By con-
trast, the best MLMM explained a low percentage of the
phenotypic variance for several traits including NDVI, RDVI,
OSAVI and those indices related to photosynthetic pigments.
Finally, a combination of nine SNPs explained 16% of the pheno-
typic variance in canopy temperature.

Discussion

Canopy segmentation and recovery of phenotypic
information

Our study is, to the best of our knowledge, the first to apply auto-
matic crown identification in a common garden of a forest

species. This approach was highly effective in identifying single
trees and providing tree-level estimations of growth-related traits.
Although ground-based and UAV data were collected over differ-
ent years, the intertree variability in height estimated through
RGB-derived imagery agreed with ground-based measurements.
Similarly, crown area was a good indicator of stem diameter, as
reported elsewhere for other species (Lockhart et al., 2005;
Filipescu et al., 2012), including Pinus spp. (Pretzsch et al.,
2015).

Developing cost- and time-effective phenotyping approaches is
fundamental for characterizing the genetic basis underlying phe-
notypic differentiation (Lobos et al., 2017). Our procedure
retrieved growth information through a single flight and few
hours of computation. Several studies have shown that the
approach based on RGB-derived dense point clouds – obtained
with inexpensive devices – can provide accurate estimations of
growth traits in natural forests and fruit orchards, comparable to
those obtained with more expensive technologies such as light
detection and ranging (LiDAR) (Zarco-Tejada et al., 2014; Wal-
lace et al., 2016; Weiss & Baret, 2017). In this regard, the contin-
uous development and optimization of algorithms for automatic
crown identification can facilitate the implementation of this
methodology to forest genetic trials. Another advantage is that it
allows the estimation of tree-level values of vegetation indices,
which are surrogates of meaningful morphophysiological traits
(Roberts et al., 2016; Santini et al., 2019b).

Traits such as leaf area or canopy transpiration can hardly be
retrieved for a significant number of adult trees through ground-
based phenotyping techniques. This issue prevented ground-
based validation of vegetation indices and thermal data in this
study. However, the indices that we considered have already been
widely used and validated in the scientific literature (Roberts
et al., 2016), including variation at individual tree level (e.g.
Berni et al., 2009; Santini et al., 2019b). By contrast, thermal
data have been used at the tree level as proxies of tree transpira-
tion and water status (e.g. Gonz�alez-Dugo et al., 2013; Ludovisi
et al., 2017). Hence, the approach developed in this study could
allow for easy routine analysis of barely investigated phenotypic
traits.

In a previous study performed in the same common garden,
vegetation indices and canopy temperature derived at the plot
level revealed interpopulation differentiation in vegetation char-
acteristics (Santini et al., 2019a). The present study provided
tree-level information which is suited for genotype–phenotype
association studies and the assessment of relationships among
phenotypic traits at the individual level. In this regard, the PCA
indicated strong relationships between indices related to leaf area,
canopy temperature and above-ground growth traits. Trees hav-
ing high leaf area and reduced canopy temperature (indicative of
high transpiration; Gonz�alez-Dugo et al., 2013) showed high
growth, indicated by large height and crown area. These results
confirm the strong dependence of growth to variation in photo-
synthetic surface and total transpiration in P. halepensis under
drought conditions (Voltas et al., 2008; Santini et al., 2019a). By
contrast, variation in leaf biochemistry seemed not to affect tree
growth to the same degree (Santini et al., 2019a).

Table 2 Results of the genome-wide association study (GWAS).

Trait Indicator Marker q PVE (%)

Leaf area EVI SNP108A 0.01 4.26
EVI SNP241A 0.01 3.75
EVI SNP273B 0.01 4.64
EVI SNP350A 0.01 4.43
EVI SNP91A 0.01 4.60
MCARI SNP241A 0.07 3.52
TCARI SNP151A 0.07 4.54

Photosynthetic pigments ARI2 SNP258B 0.14 4.87
CRI2 SNP67A 0.05 5.00
CRI2 SNP201B 0.06 3.95
CRI2 SNP204B 0.03 4.96

Water content WBI SNP91A 0.02 5.15
WBI SNP108A 0.02 4.07
WBI SNP133A 0.02 4.28
WBI SNP265B 0.02 4.46
WBI SNP350A 0.02 4.82

Canopy temperature T SNP140B 0.11 4.34
Growth traits Crown area SNP2B 0.05 4.94

Crown area SNP9A 0.05 5.38
HUAV SNP18A < 0.001 7.39
HUAV SNP108A < 0.001 6.64
HUAV SNP133A < 0.001 6.43
HUAV SNP159A < 0.001 6.85
HUAV SNP206B < 0.001 5.70
HUAV SNP217A < 0.001 5.08
HUAV SNP250B < 0.001 5.50
HUAV SNP273B < 0.001 5.52
HUAV SNP340B < 0.001 5.70
HUAV SNP350A < 0.001 10.03

The single nucleotide polymorphisms (SNPs) associated with traits with
P < 10�3 are reported, together with the corrected q-value and the per-
centage of variance explained (PVE).
EVI, enhanced vegetation index; MCARI, modified chlorophyll absorption
reflectance index; TCARI, transformed chlorophyll absorption reflectance
index; ARI2, anthocyanin reflectance index 2; CRI2, carotenoid reflectance
index 2; WBI, water band index; T, canopy temperature; HUAV, tree height
derived from drone imagery.
AFrom resequenced genes of loblolly pine.
BFrom Pinus halepensis transcriptome.
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Association genetics of growth traits

Despite the low number of markers considered, the results of this
study showed the effectiveness of combining genotypic informa-
tion with UAV imagery to characterize the genomic basis of phe-
notypic differentiation in forest species. Indeed, we identified
relevant genotypic–phenotypic associations for several traits
related to growth and vegetation indices. Such associations
provide first insight into adaptive genomic variation in P.
halepensis, although an intrinsic limitation of our approach is the
lack of strong evidence on how variation at the cellular and tissue
levels is coordinated with changes at the whole-organism level.
Regardless, the detected loci deserve further attention in relation
to their potential adaptive role for this and other closely related
pines.

GWAS identified 12 SNPs significantly associated with UAV-
derived crown area and tree height, explaining a proportion of
phenotypic variance of 5–10%. Because linkage disequilibrium
decays rapidly in conifers (De La Torre et al., 2014; Plomion
et al., 2016), these SNPs are probably quantitative trait
nucleotides (i.e. single polymorphisms influencing the pheno-
type) or are located in close proximity to the causative polymor-
phisms. Our results indicate that these SNPs do not produce
protein change or alteration, being probably involved in changes
of gene expression. Most of the relevant SNPs were annotated
with known proteins, even though a correct annotation was not
feasible in some cases. This may be partially due to the relatively
scarce information on conifer genomes that is available to date,
which emphasizes the need of further studies to characterize tree
genomes (De La Torre et al., 2014).

Table 3 Annotation of the single nucleotide polymorphisms (SNPs) detected in genome-wide association study (GWAS).

SNP ID Accession
E-values
BLASTX Annotation Species Molecular function Biological function

SNP9 XP_006826240.1 2E-10 Heat shock factor protein
HSF24

Amborella

trichopoda

DNA-binding transcription
factor activity; RNA
polymerase II cis-regula-
tory region; sequence-
specific DNA

Cellular response to
heat; regulation of
transcription from
RNA polymerase II
promoter in
response to stress

SNP18 ACJ09662.1 9E-45 Putative calcium-dependent
protein kinase

Cupressus

sempervirens

Kinase; transferase –

SNP67 XP_031397970.1 1E-14 Leaf rust 10 disease-
resistance locus receptor

Punica granatum ATP binding; polysaccharide
binding; protein serine/
threonine kinase activity

–

SNP91 ABF73316.1 4E-14 Clavata-like receptor Picea glauca ATP binding; protein kinase
activity

–

SNP108 TKS08810.1 2E-41 DNAJ heat shock N-
terminal domain-
containing family protein

Populus alba – –

SNP133 ABG34278.1 6E-58 Polygalacturonase Eucalyptus globulus Polygalacturonase activity Carbohydrate
metabolic process;
cell wall
organization

SNP151 XP_002320762.1 3E-13 Peroxisomal membrane
protein 11D

Populus trichocarpa Identical protein binding Peroxisome fission;
peroxisome
organization;
regulation of
eproxisome size

SNP159 ACJ09662.1 9E-45 Putative calcium-dependent
protein kinase, partial

Cupressus

sempervirens

Kinase; transferase –

SNP206 ABR15469.1 0.00 GDP-mannose
pyrophosphorylase

Pinus taeda Nucleotidyltransferase
activity

Biosynthetic
processes

SNP241 ATP71577.1 0.004 Hypothetical protein Pinus pinaster – –
SNP258 AJP06341.1 0.00 PIN2 Pinus tabuliformis – Auxin-activated

signalling pathway;
transmembrane
transport

SNP273 AAQ63936.1 8E-15 Cellulose synthase, partial Pinus radiata Cellulose synthase (UDP-
forming); metal ion
binding

–

SNP340 ABR15469.1 0.00 GDP-mannose
pyrophosphorylase

Pinus taeda Nucleotidyltransferase
activity

Biosynthetic process

SNP350 AEX11975.1 2E-78 Hypothetical protein Pinus taeda – –
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Growth-associated SNPs that could be annotated included
genomic regions encoding for a disparate number of proteins. In
particular, differences in crown area were associated with a gene
marker (SNP 9) coding for a heat stress transcription factor,
which is part of a family of proteins involved in response to heat
stress (Scharf et al., 2012). In the case of tree height, significant
associations were found with genes encoding for: calcium-depen-
dent kinase (SNP 18 and SNP 159), which influences plant
responses to endogenous and environmental cues (Romeis,
2001); GDP-mannose pyrophosporylase (SNP 340) involved in
ascorbic acid metabolism (Keller et al., 1999); cellulose synthase
(SNP 273), which influences cell wall synthesis and organization
(Richmond & Somerville, 2000); and polygalacturonase (SNP
133 and SNP 206) involved in tissue development and stomatal
dynamics (Rui et al., 2017).

These results suggest that the genetic control of complex traits
such as growth is associated with a large number of interacting
genes with very diverse functions. However, the multilocus asso-
ciation analysis revealed that a combination of only two SNPs
explained most phenotypic variation (16%) in tree height. This
outcome could be partially due to the inability of the MLMM to
identify loci with small effects in the presence of loci with large
effects on the phenotype. By contrast, the result of the MLMM
may also indicate that the effects of a single locus of tree height
identified by GWAS are largely overlapping. Finally, it must be
noted that differences in the number of SNPs detected through
each approach could originate, at least in part, from different sta-
tistical treatments of missing data.

Association genetics of vegetation properties

GWAS also revealed several SNPs significantly associated with
phenotypic variation in vegetation indices. These associations
were inconsistent across indices related to leaf area, however.

Some indices (i.e. NDVI, RDVI and OSAVI) are known to satu-
rate at high leaf areas, being potentially unable to intercept fine
interindividual differences in this trait (Roberts et al., 2016). By
contrast, several marker-trait associations emerged with EVI,
which is less sensitive to saturation. Two of the identified SNPs
related to EVI were annotated to known proteins. SNP 91 codes
for a clavata-like receptor kinase, which is involved in tissue
development and meristem differentiation (Clark, 2001). SNP
273 is found in a gene coding for a cellulose synthase, which is
part of a family of genes with a crucial role in cell wall synthesis
and organization, in turn influencing tissue growth and develop-
ment (Richmond & Somerville, 2000). Interestingly, proteins of
the cellulose synthase family are associated with the control of leaf
size in Arabidopsis (Horiguchi et al., 2006) and maize (Li et al.,
2018). Another gene marker (SNP 151) was associated with
TCARI, an index partly related to leaf area. SNP 151 is found in
a gene coding for PEX11C protein involved in peroxisome
metabolism. Among other functions, proteins of the PEX family
have been shown to regulate photomorphogenesis through a
light-mediated pattern of induction of peroxisome proliferation,
with potential implications on leaf development (Hu et al., 2002;
Kaur at al., 2013). Interestingly, this SNP was reported to be
under selection in P. halepensis and associated with variation in
summer precipitation at the origin of natural populations (Ruiz
Daniels et al., 2018). In other Mediterranean pines (P. pinaster
and P. pinea), the expression of a homologous gene was induced
by drought stress (Perdiguero et al., 2013).

Although TCARI is also sensitive to changes in leaf Chl con-
tent, no significant marker-trait associations emerged with the
index TCARI/OSAVI, which is specifically related to Chl con-
tent (Zarco-Tejada et al., 2004). This may be due to weak genetic
differentiation in photosynthetic capacity of P. halepensis (Santini
et al., 2019a). By contrast, four SNPs were associated with
carotenoid or anthocyanin content, and two of them were

Table 4 Results of the multilocus mixed model (MLMM) analysis.

Trait Indicator SNPs as cofactors in the best fitting model PVE (%)

Leaf area NDVI 183 2.13
OSAVI 183 3.05
RDVI 108, 183 3.48
EVI 16, 38, 106, 108, 222, 256, 264, 269, 326, 350 18.34
MCARI 133, 222 5.17
TCARI 38, 140, 222, 312, 350, 368 10.04

Photosynthetic pigments TCARI/OSAVI 315 2.24
ARI2 261 2.83
CRI2 8 4.09

Water content WBI 140, 156, 205, 216, 304, 312, 319, 343, 350 19.83
Canopy temperature T 128, 140, 180, 215, 248, 258, 275, 319, 375 16.51
Growth traits Crown area 21, 49 8.48

HUAV 18, 350 15.74

For each trait, the single nucleotide polymorphisms (SNPs) included as cofactor in the best fitting model are reported, as well as the percentage of variance
explained (PVE) explained by the combination of SNPs.
NDVI, normalized difference vegetation index; OSAVI, optimized soil adjusted vegetation index; RDVI, renormalized difference vegetation index; EVI,
enhanced vegetation index; MCARI, modified chlorophyll absorption reflectance index; TCARI, transformed chlorophyll absorption reflectance index;
ARI2, anthocyanin reflectance index 2; CRI2, carotenoid reflectance index 2; WBI, water band index; T, canopy temperature; HUAV, tree height derived
from drone imagery.
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annotated with homologous proteins described in other species.
In particular, SNP 258 is located in a gene coding for a PIN2
protein involved in auxin transport and auxin-mediated sig-
nalling, while the protein associated with SNP 67 is involved in
pathogen resistance. Anthocyanins and carotenoids are involved
in a myriad of plant processes related to stress response (Havaux,
2014; Van der Ende & El-Esawe, 2014). Interestingly, some
studies have reported that carotenoid accumulation is, in some
cases, mediated by auxin balance (Du et al., 2012; Su et al.,
2015). In this regard, SNP 258 was also identified in a recent
study as a candidate gene involved in adaptation to local climate
(Ruiz Daniels et al., 2019).

The WBI index, indicative of leaf water content, was associ-
ated with five SNPs. Two of them are located in genes of known
functions. SNP 133 is found in a gene encoding the polygalactur-
onase isoform X3 protein, which has been widely studied in the
model plant Arabidopsis. This protein influences tissue develop-
ment and is involved in stomatal dynamics of mature leaves,
which might explain the association found with leaf water con-
tent (Rui et al., 2017). SNP 91 codes for a clavata-like receptor
kinase and it was associated also with leaf area indices (Clark,
2001).

However, the identified SNPs had small effects on pheno-
types, explaining individually less than 6% of the variation in
vegetation indices or canopy temperature. Genetic variation in
single markers usually accounts for a small proportion of pheno-
typic variance in forest species (Eckert et al., 2009; Prunier
et al., 2013; Baison et al., 2019). Indeed, many adaptive traits
are probably under polygenic control, suggesting that many loci
with minor effect might modify their expression (Savolainen
et al., 2007; White et al., 2007). Moreover, the single contribu-
tion of many other genes to complex traits such as leaf architec-
ture or water use may be too small to be detected by GWAS
(Resende et al., 2017). In this regard, the multilocus association
test showed that combinations of several markers are able to
explain a relatively large proportion of the phenotypic variation
in leaf area and transpiration. This result suggests that associa-
tion analyses carried out considering a larger number of markers
simultaneously can capture a sizeable part of the variation of
complex traits in forest species (Savolainen et al., 2007; Gratta-
paglia et al., 2009).

Even considering a polygenic model, however, a large part of
the phenotypic variation both in vegetation indices and in growth
traits remained unexplained. We speculate that this may be
related to inaccuracies in UAV-derived records and, also, to low
marker coverage, which stresses the importance of allowing for
the largest possible number of markers across the genome
(Resende et al., 2017). Nevertheless, it is worth noting that a high
phenotypic variance is seldom explained by genetic variation even
in organisms for which dense, genome-wide sets of markers are
available (Manolio et al., 2009; Bourrat et al., 2017). This issue,
known as ‘missing hereditability’, suggests that phenotypic varia-
tion may be broadly influenced by largely unknown underlying
factors such as epistatic interactions or epigenetic modifications
of gene expression (Manolio et al., 2009; Trerotola et al., 2015;
Bourrat et al., 2017).

Pleiotropy

Some SNPs showed significant associations with multiple corre-
lated traits, a possible indication of pleiotropic effects with genes
influencing different traits simultaneously (Wu et al., 2000).
However, these SNPs probably concur to determine only one
trait, showing multiple associations because of correlated traits.
For example, three SNPs (108, 273 and 350) were associated
with both tree height and some indices related to leaf area, traits
that were associated among individuals. By contrast, SNPs 133
and 350 were associated with both tree height and WBI, traits
that were weakly correlated among individuals. Such associations
involving more than one trait could be indicative of true
pleiotropy, with gene markers influencing both leaf water content
and tree growth concurrently.

Conclusions

In this study, we developed a workflow for (semi-)automatic phe-
notyping of trees growing in a common garden. In the era of
genomics, retrieving meaningful phenotypic information with
time- and cost-effective tools has the potential to boost the char-
acterization of the genetic basis of fundamental evolutionary pro-
cesses involved in phenotypic differentiation of nonmodel
organisms (Großkinsky et al., 2015). Although the scope of our
inferences could be undoubtedly broadened by using a signifi-
cantly larger number of markers and individuals, this study high-
lights the type of information that can be obtained through high-
throughput phenotyping approaches. Indeed, our results provide
insight into the molecular processes controlling phenotypic dif-
ferentiation in a widespread conifer, underlining the potential of
widely available new technologies to fill the gap between genetic
variability and individual phenotypes (Houle et al., 2010).
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