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Abstract

Background: The prediction of biogeographical patterns from a large number of driving factors with complex
interactions, correlations and non-linear dependences require advanced analytical methods and modeling tools.
This study compares different statistical and machine learning-based models for predicting fungal productivity
biogeographical patterns as a case study for the thorough assessment of the performance of alternative modeling
approaches to provide accurate and ecologically-consistent predictions.

Methods: We evaluated and compared the performance of two statistical modeling techniques, namely,
generalized linear mixed models and geographically weighted regression, and four techniques based on different
machine learning algorithms, namely, random forest, extreme gradient boosting, support vector machine and
artificial neural network to predict fungal productivity. Model evaluation was conducted using a systematic
methodology combining random, spatial and environmental blocking together with the assessment of the
ecological consistency of spatially-explicit model predictions according to scientific knowledge.

Results: Fungal productivity predictions were sensitive to the modeling approach and the number of predictors
used. Moreover, the importance assigned to different predictors varied between machine learning modeling
approaches. Decision tree-based models increased prediction accuracy by more than 10% compared to other
machine learning approaches, and by more than 20% compared to statistical models, and resulted in higher
ecological consistence of the predicted biogeographical patterns of fungal productivity.
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Conclusions: Decision tree-based models were the best approach for prediction both in sampling-like
environments as well as in extrapolation beyond the spatial and climatic range of the modeling data. In this study,
we show that proper variable selection is crucial to create robust models for extrapolation in biophysically
differentiated areas. This allows for reducing the dimensions of the ecosystem space described by the predictors of
the models, resulting in higher similarity between the modeling data and the environmental conditions over the
whole study area. When dealing with spatial-temporal data in the analysis of biogeographical patterns,
environmental blocking is postulated as a highly informative technique to be used in cross-validation to assess the
prediction error over larger scales.
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Background
Understanding the biogeographical patterns of organisms
in natural ecosystems and predicting their distribution is a
fundamental challenge in environmental sciences (Ehrlén
and Morris 2015). This entails a deep understanding of
their distribution across space and time underpinning
ecological mechanisms, which becomes increasingly
complex with an increasing amount of factors driving
these patterns and the possible interactions and nonlinear
dependencies between them (Dixon et al. 1999; Ye et al.
2015). Such complex interrelationships require advanced
data analytic methods and modeling tools to yield realistic
predictions of natural ecosystem attributes and processes.
Statistical methods traditionally used for this purpose

aim at accounting for several elements that govern these
natural mechanisms, trying to reach a parsimonious and
robust understanding of ecological patterns (Wood and
Thomas 1999). However, since conventional parametric
approaches may over-simplify nonlinear relationships
between variables and over- or under-estimate the influ-
ence of some drivers, conventional parametric approaches
may result in poor predictions and/or descriptions of
reality (Ye et al. 2015), especially for the analyses of large
databases. To overcome potential limitations of classic
statistical approaches in big data analysis, the increased
computing power has led to recent considerable growth in
the use of analytical methods based on artificial intelligence
such as machine learning (Christin et al. 2019).
Machine learning algorithms are increasingly being

used in species distribution and ecological niche modeling
(Prasad et al. 2006; Cutler et al. 2007; Hannemann et al.
2015; Liang et al. 2016; Prasad 2018; Gobeyn et al. 2019),
forest resources (Stojanova et al. 2010; Görgens et al.
2015) and climate change studies (Thuille 2003; Bastin
et al. 2019), among others. To determine to what extent
these “new” methodologies can contribute to improving
our understanding and prediction capacity within the field
of environmental sciences, comparative studies are re-
quired between those models that have been used histor-
ically and those fed by artificial intelligence algorithms
(Özçelik et al. 2013; Diamantopoulou et al. 2015; Hill et al.

2017; Bonete et al. 2020). Yet, many machine learning
algorithms have been developed in recent years, and each
of them may be more or less appropriate depending on
the specific tasks and research objectives (Thessen 2016).
This highlights the need for systematic studies allowing
for discerning the most suitable methodology according to
a given research objective and data. Although several stud-
ies have analysed the performance of different analytical
approaches (Hill et al. 2017; Bonete et al. 2020; Mayfield
et al. 2020), existing ecological research addressing sys-
tematic assessments and comparisons of alternative mod-
eling and predictive methods is scarce, making it difficult
to provide clear methodological recommendations about
the suitability of different approaches. Besides, in the field
of environmental sciences, often, extrapolations in biophy-
sically differentiated areas are required, which makes it ne-
cessary to take even more into account the data spatial
dependencies. Due to data spatial autocorrelation, random
cross-validations leads to over-optimistic error estimates
(Bahn and McGill, 2012; Micheletti et al., 2013; Juel et al.
2015; Gasch et al. 2015; Roberts et al. 2017; Meyer et al.
2018; Meyer et al. 2019a), which makes it necessary to use
proper, complementary validation methods such as spatial
cross-validation (Le Rest et al. 2014; Pohjankukka et al.
2017; Roberts et al. 2017; Meyer et al. 2018; Valavi et al.
2018). Moreover, spatial dependencies in the data can lead
to a misinterpretation of some predictors outside the sam-
pling range (Meyer et al. 2018, 2019a).
Biogeographical patterns of fungal dynamics over large

scales are a highly relevant question in ecology given the
key role of fungi in forest ecosystems (Stokland et al. 2012;
Mohan et al. 2014), especially in fungi-tree symbiosis.
However, due to their great diversity and differential eco-
logical requirements (Glassman et al. 2017), as well as the
difficulty of monitoring their dynamics and the large array
of potential drivers (Büntgen et al. 2013), little is known of
fungal dynamics over large scales. The prediction of biogeo-
graphical patterns of fungal dynamics requires large fungal
datasets with a correct taxonomic identification of the
specimens and a consistent sampling methodology across
space and time to avoid sample bias (Hao et al. 2020).
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In particular, the spatially-explicit prediction of fungal
productivity, i.e. mushroom fruiting patterns, is a key
feature of fungal dynamics as it is tightly related to the
supply of multiple provisioning, regulating and cultural
ecosystem services (Boa 2004). However, the high correl-
ation between mushroom production and meteoro-
logical conditions among other drivers (Taye et al. 2016;
Alday et al. 2017; Collado et al. 2019) makes the predic-
tion of mushroom production challenging, especially in
Mediterranean ecosystems where there is a high inter-
annual variability of climatic conditions. The long period
of potential fruiting of different mushroom species, as a
result of their adaptation to the recurrent climatic
patterns of a dry summer followed by a wet autumn
(Barnard et al., 2014), makes mushroom yields
dependent on a large number of variables. Precipitation
and temperatures on a weekly scale can be the factors
that lengthen, shorten or shift the fruiting period (Gange
et al. 2007; Kauserud et al. 2008; Kauserud et al., 2009;
Büntgen et al. 2012), and also those that modulate
mushroom production to a higher degree (Karavani
et al. 2018). The large number of variables involved and
their presumed interactions may often yield a miscon-
ception that fungal productivity is highly stochastic or
very difficult to predict. Previous research to estimate
mushroom productivity over large scales has been
mainly based on mixed-effects modeling (de-Miguel
et al. 2014; Sánchez-González et al. 2019). Despite being
a valid approach, it may have certain limitations that are
worth assessing in comparison with alternative methods
that remain unexplored.
This study compares different statistical and machine

learning models in estimating mushroom productivity at
the landscape level, together with a systematic method-
ology to determine the best approach to predict mush-
room production in forest ecosystems. Using climatic
and biophysical data together with in situ fungal records
collected weekly over more than 20 years on a hundred
permanent plots, we developed spatially explicit, high-
resolution continuous maps of mushroom productivity
that were also used in the selection of the most suitable
methods for predicting this ephemeral and important
forest resource. Specifically, we compared two statistical
models, namely, generalized linear mixed models (GLMM)
and geographically weighted regression models (GWR), as
well as four alternative state-of-the-art machine learning
algorithms such as random forest (RF), extreme gradient
boosting (XGB), support vector machine (SVM) and artifi-
cial neural network (ANN).

Methods
Study area and sampling plots
The study area was Catalonia region, northeastern Spain,
in the western Mediterranean basin. The forest ecosystem

types considered in this study were the main Mediterranean
pine forest ecosystems that represent the majority of the
forest area of the study region, namely, pure stands of Pinus
halepensis, P. sylvestris, P. pinaster, P. nigra and P. uncinata
and mixed stands of P. halepensis and P. nigra, and of P.
sylvestris and P. nigra. We used a dataset that contains
information from 98 permanent monitoring plots for fungal
dynamics sampled on a weekly basis during the main
mushroom fruiting period, between August and the end of
December and from 1997 to 2019. The plots were distrib-
uted randomly and proportionally to the relative surface of
the different pine forest ecosystems (Bonet et al.
2010) (Fig. S1). Data were aggregated to an annual
basis to create predictive models to estimate annual
mushroom productivity. More information about the
sampling methods and data can be found in Bonet
et al. (2004), Martínez de Aragón et al. (2007) and
Table S3.

Climate and biophysical data
Meteorological data for each sampling plot was obtained
from the interpolation and altitudinal correction of daily
weather of 201 meteorological stations from the Catalan
Meteorological Service and the Spanish Meteorological
Agency. Interpolation was conducted with “meteoland”
R package (v0.8.1; De Cáceres et al. 2018) that uses a
modification of the DAYMET methodology (Thornton
et al. 1997; Thornton and Running 1999). Likewise, to
determine the typical climatic conditions across the
whole study region, we used the mean of the interpo-
lated daily weather variables for the period between
1991 and 2016 with 1-km resolution. We computed the
accumulated monthly rainfall from August to October
and the mean, maximum and minimum monthly
temperatures for the same period, coinciding with the
main mushroom fruiting period.
The total area covered by the different pine forest

ecosystems was retrieved from the CORINE habitats
map (Commission of the European Community 1991).
The biophysical variables such as elevation, slope, aspect
and stand basal area were obtained at 20-m resolution
from the first cover of the LIDARCAT Project (http://
territori.gencat.cat/es/detalls/Article/Mapes_variables_
biofisiques_arbrat) based on different LiDAR flights
between 2008 and 2011 with a point density of 0.5
points∙m− 2.

Analytical methods
We used and compared six different analytical methods
to predict annual mushroom productivity. Two analytical
approaches were based on statistical methods, namely,
generalized linear mixed-effects models (GLMM) and
geographically weighted regression (GWR), whereas the
other four analytical methods were based on alternative
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machine learning approaches, namely, random forest (RF),
extreme gradient boosting (XGB), support vector machine
(SVM) and artificial neural network (ANN).

Statistical models fitting
We used a two-stage modeling approach to take into
account the high frequency of “zero” production values
in many sample plots over time (Hamilton and Brickell
1983; de-Miguel et al. 2014; Karavani et al. 2018; Collado
et al. 2018). The high occurrence of these values arise
from the small size of the plots and the stochastic nature
of mushroom emergence (de-Miguel et al. 2014).
The first stage determines the probability of mushroom

emergence, according to binomial data of presence/ab-
sence, using a logistic regression π(X) = E(Y|X) and a logit
link function to represent the conditioned mean of Y
given X (Eqs. 1 and 2).

π xkð Þ ¼ E Y jxkð Þ ¼ 1
1þ e − g xkð Þ ð1Þ

g xkð Þ ¼ ln
π xkð Þ

1 − π xkð Þ
� �

¼ β0 þ βkxk ð2Þ

where π (xk) is the probability of mushroom occurrence,
g (xk) the logit transformation of π (xk), Y is the
dependent variable (mushroom presence/absence), xk is
kth independent variable, β0 is the intercept parameter
and βk is the regression coefficient for kth independent
variable.
The second stage was based on the modeling of the

production of non-zero production values at logarithmic
scale using linear regression y = E (log(Y)|X) + ε. Logarith-
mic transformation allows to limit the production range
in the interval [0, ∞), depending on the values of X (Eq. 3).
The proportional bias of the logarithmic regression was
corrected with the Snowdon’s bias correction factor
(Snowdon 1991) based on the ratio of the arithmetic
sample mean and the mean of the back-transformed
predicted values from the regression (Eq. 4):

ln prodð Þ ¼ β0 þ βkxk þ ε ð3Þ

CF ¼ Y=ŷ ð4Þ

where ln (prod) represents the non-zero production of
mushrooms at logarithmic scale, β0 is the intercept
parameter, βk the regression coefficient for kth independ-
ent variable, ε the random error of the deviation of the
observations from the conditioned mean of ln(Y) and Y/
ŷ is the ratio between the mean of observed and the
mean of predicted values of the sapling units.
Finally, the total production of mushrooms was obtained

from the product of the probability of appearance and the
conditioned production of non-zero values (Eq. 5).

yield ¼ π xkð Þ e ln yieldð Þ CF ð5Þ
where π (xk) is the probability of mushroom occurrence,
ln (yield) represents the production of mushrooms at
logarithmic scale and CF is bias correction factor.

Generalized linear mixed models Due to mushrooms
sampling methodology, where annually data was taken
from a network of permanent plots, we used GLMM
(de-Miguel et al. 2014; Karavani et al. 2018; Collado
et al. 2018). This method can consider the spatial and
temporal autocorrelation among observations (Pinheiro
and Bates 2000) adding random effects to segment the
data into different groups according to year and plot. In
the proposed mixed-effects models only random effects
on model interception were considered. All the models
were fitted using the “glmer” function from the “lme4” R
package (v1.1–21; Bates et al. 2015).

Geographically weighted regression GWR is a non-
stationary modeling technique that describes the
spatially varying relationships between the dependent
variable and the explanatory variables (Wheeler and Páez
2009). Coefficients of a GWR-based model are given by
the spatial location of data and can be estimated for any
new location. This means that given a grid, the esti-
mated coefficients for each point in space vary continu-
ously as a function of the spatial heterogeneity of the
relationships.
Coefficients for each regression point were calibrated

using the data around itself. Due to the annual sampling
methodology and the geographical distribution of plots,
some plots were grouped denser in some areas and less
dense in others. Consequently, we used an adaptive
window according to the spatial density of our plots
(Georganos et al. 2017). Occurrence and conditional
production models, as well as the optimal data value for
adjusting the adaptive window, were obtained from the
“ggwr” and “gwr.set” functions, respectively, of the R
package “spgwr” (v0.6–32; Bivand and Yu, 2017).

Hyperparameters optimization of machine learning models
To optimize the performance of machine learning
models, it was necessary to tune their respective hyper-
parameters (Hutter et al. 2011; Bergstra and Bengio
2012; Duarte and Wainer 2017). This needs to be con-
ducted prior to the training of the final predictive
models and also needs to consider the spatial and tem-
poral dependencies of both the modeling and prediction
datasets (Schratz et al. 2019). Since hyperparameters
tuning based on a resampling method such as k-fold
cross-validation may lead to an incorrect tuning for
models that aim to predict in environmentally different
areas (Roberts et al. 2017), hyperparameters tuning was
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conducted based on several alternative resampling
techniques, namely, k-fold cross-validation, spatial cross-
validation, and environmental cross-validation (Roberts
et al. 2017).
We used an optimization algorithm based on a search

grid (Bergstra and Bengio 2012) implemented in the R
package “mlr3tuning” (v0.5.0; Becker et al. 2020) that se-
lects the best hyperparameters configuration according
to a given metric. The search space was defined from
the Cartesian product of the discretized values of a set
of n hyperparameters to be tuned in each model
(Table 1). First, a set of hyperparameters configurations
from the search grid was randomly selected and evalu-
ated according to each resampling strategy. A search
grid of resolution 25 was defined and tested with a total
of 250 different hyperparameters configurations. Other-
wise, we used 10 folds in each resampling strategy using
the R package “mlr3” (v0.9.0; Lang et al. 2019) for the
core computational operations and the extensions
“mlr3spatiotempcv” (v0.1.1; Schratz and Becker 2021)
and “mlr3learners” (v0.4.3; Lang et al. 2020a) for the re-
sampling and the use of the different models, respect-
ively. In addition, the R packages “paradox” (v0.6.0; Lang
et al. 2020b) and “mlr3keras” (v0.1.3; Pfisterer et al.
2021) were also used in hyperparameters tuning.

Model and variable selection and evaluation
Statistical model evaluation and variable selection was
based on the current knowledge of forests and
mushroom ecology, the statistical significance of model
parameters (p < 0.05 or t > |1.96|), the variance inflation
factor (VIF) to quantify the severity of multicollinearity
and the parsimony principle. To check the sensitivity/

specificity of the binomial classification models we used
Receiver Operator Characteristic (ROC) curves, using
the R package “ROCR” (v1.0–7; Sing et al. 2005).
To assess whether GWR improved GLMM due to the

non-stationary nature of data and to avoid introducing
an improvement that was not attributed to the type of
modeling, the same explanatory variables as in GLMM
were used. To test the non-stationarity of the independ-
ent variables of GWR models, the local parameters were
compared with global GLMM coefficients. The probabil-
ity of incorporating non-stationary variables increases if
the estimated coefficient of the variable in GLMM (±
standard error) is outside the 1st and 3rd quartile of the
GWR model coefficient (Propastin 2009).
For each of the four machine learning algorithms, two

models were adjusted. The first ones were trained using
a total of 15 biophysical variables, while the second ones
were trained using a subset of them (Table S1). This
subset was determined from the same five variables used
in the statistical models, including climate predictors
only. This allowed us to assess separately the prediction
accuracy due to the analytical method, and the predic-
tion accuracy due to differences between predictors or
the number of explanatory variables. The final machine
learning models were trained using 100% of the sampled
data (henceforth referred to as “modeling data”) and the
optimal hyperparameters settings. We used the opti-
mized hyperparameters from an environmental blocking
(Roberts et al. 2017) to train the final models. The rela-
tionship between predictors and mushroom productivity
was assessed based on partial dependence plots (PDPs),
a low-dimensional graphical rendering between variable
pairs, in order to determine whether this relationship
lacked ecological sense. The importance of the predictors
of the models was determined from a sensitivity analysis
using the R package “rminer” (v1.4.2; Cortez 2016).

Evaluation of the predictive performance and mapping
Since the main purpose of this study was to develop
models to accurately predict mushroom productivity,
this entails the evaluation of the predictive performance
of the resulting models also outside of the range of the
training (or fitting) region. With the aim of determining
the similarities between modeling data and the environ-
mental conditions of the whole study area, a principal
component analysis (PCA) based on both datasets
altogether was used. Using the location of the modeling
data within the space described by the first two compo-
nents of the PCA, a density map was created based on a
two-dimensional kernel density estimation and imple-
mented in the “kde2d” function of the R package “MASS”
(Venables et al. 2002). By overlapping this density map
and the location of each pixel of the study area within the
space defined by the two principal components of the

Table 1 Hyperparameters ranges and types for each machine
learning model

Algorithm Hyperparameter ID Type Lower Upper

RF mtry Integer 1 N° of predictors

min.node.size Integer 1 100

num.trees Integer 2 500

XGB nrounds Integer 1 100

gamma Numeric 1 25

max_depth Integer 1 15

eta Numeric 0.1 1

SVM cost Numeric 1 50

gamma Numeric 0.1 1

ANN epochs Integer 1 100

batch_size Integer 1 N° observations

“Hyperparameter id” corresponds to the names specified in the R package
used to train each model. RF (random forest), XGB (extreme gradient
boosting), SVM (support vector machine), and ANN (artificial neural network)
models were trained using the R packages “ranger” (v0.12.1; Wright and
Ziegler 2017), “xgboost” (v0.90.0.2; Chen et al. 2019), “e1071” (v1.7–2; Meyer
et al. 2019b) and “keras” (v2.3.0.0.0; Allaire and Chollet 2019), respectively
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PCA, a similarity value (ranging from 0 to 1) was obtained
for each pixel of the study area based on the modeling
data density. This similarity value was classified in three
categories: low [0, 0.1], medium (0.1, 0.3] and high (0.3, 1]
similarity. This classification mainly aimed at detecting
the areas with very low similarity, i.e. with very different
climatic conditions compared to the modeling data. This
whole procedure was performed separately using the 5
climatic predictors of the 5-variable models and the 12
climatic predictors of the 15-variable models, respectively.
To evaluate and compare the predictive accuracy of

the models, different resampling strategies were used
(see the section of Hyperparameters optimization of
machine learning models). The MSE and bias2 of the
models were estimated by averaging, respectively, over
the MSE and bias2 obtained from each of the 10 folds
for each cross-validation strategy.
To generate the landscape-level mushroom productiv-

ity maps we used the predictions of the final trained
models. These maps were constructed with a resolution
of 1 km in accordance with the resolution of the climatic
data. The resulting maps were evaluated on the basis of
the scientific and expert knowledge about biogeographical
fungal productivity patterns in order to assess whether
they followed ecologically logical patterns (related to
climatic conditions). Thus, we would expect smoothed
estimates across the territory driven by the variations of
the most important predictors of each model.

Results
Relationships between dependent and explanatory
variables
Statistical models showed a statistically significant and
positive relationship of mushroom productivity with
rainfall in August, September and October (both in
conditioned production and occurrence models). On the
other hand, conditioned production and occurrence

models also showed a statistically significant and nega-
tive relationship with the maximum temperature of
August and October, respectively (Tables S1, S2, S3).
Yet, the coefficients of GWR models varied according to
geographical location (Table S3 and Fig. S2), describing
certain non-stationarity in both precipitation and
temperature.
Within GLMM models, PDPs showed an almost linear

relationship between the amount of precipitation be-
tween August and October and mushroom productivity
in the model fit data range. In contrast, GWR showed
an accelerated growth in productivity by increasing
rainfall, which was accentuated in those locations with a
higher precipitation regression coefficient. Besides, and
similarly in GLMM and GWR, the maximum temperature
in August showed a decelerated decrease in productivity by
increasing temperature, while the maximum temperature
of October, even though it showed a negative relation,
resulted in little relevance in mushroom productivity for
the range of values of the fitting data (Fig. 1).
Different machine learning models resulted in rather

similar relationships between variables although, due to
the particularities of each algorithm, the patterns
changed slightly between approaches. In contrast to the
relationships in GLMM and GWR models, some of the
machine learning models did not show monotonically
increasing or decreasing relationships between dependent
and explanatory variables. This monotony was often
broken at the extremes of the range of values of the
predictor variables, where the amount of data to train the
models was lower (Fig. 1). Moreover, machine learning
methods also showed differences in the importance
assigned to different predictors. Thus, XGB identified
some variables as very important compared to other
predictors. Specifically, in the models trained with 15
variables, XGB showed a greater importance of precipita-
tion in August, September and October, minimum

Fig. 1 Relationship between annual mushroom productivity and August, September and October precipitation and maximum temperatures in
September and October (these variables are the variables used in the statistical models and the five variables machine learning models). ran
(random forest), xgb (extreme gradient boosting), svm (support vector machine), ann (artificial neural network), glmm (generalized linear mixed
models) and gwr (geographically weighted regression). 05 and 15 refer to the models trained with five and fifteen variables, respectively
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temperature in October and aspect. In addition, precipita-
tion of August resulted in having further greater import-
ance in the models trained with five variables. Conversely,
the importance detected by RF and SVM to the whole
array of predictors was more homogeneous. RF showed a
greater importance to the same variables as XGB, while
the most important variables in SVM were precipitation
in September and October, average temperature in August
and September, and minimum temperature in August
(Fig. 2).
GLMM and GWR fitted models and their coefficients are

shown in the supplementary material in Table S1 to S3.
Likewise, optimal machine learning hyperparameters can be
found in the supplementary material in Tables S4 and S5.

Predictive accuracy of different methods
In general, ML models showed better predictive accur-
acy, in terms of MSE, compared to the statistical models.

Within ML models, ANN models showed a higher error
than the other algorithms. Decision tree-based models,
namely, RF and XGB, showed no differences between
the 15- and five-variable models when k-fold CV-based
resampling was used. Using an environmental blocking,
RF models, as well as SVM and ANN, showed lower ac-
curacy when using five variables instead of 15. Contrary,
the prediction error using XGB increased significantly
when using 15 variables (instead of five) in the environ-
mental CV, resulting in the lowest accuracy among all
machine learning models and equaling the error of the
statistical models. Decision tree-based models reduced
significantly the bias between predicted and observed
values, especially when conducting k-fold CV. On the
other hand, the error estimated from a spatial CV with
the SVM and ANN models trained with 15 variables was
lower than in the five-variable models. Using a k-fold
CV, the error of the SVM models was higher when using

Fig. 2 Standardized variable importance value used to train random forest (ran), extreme gradient boosting (xgb) and support vector machine
(svm) models with five a and 15 b variables. Variable importance values represent the contribution of each variable in the prediction of annual
mushroom productivity
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more predictors, whereas in the ANN models it was
higher when using more parsimonious models. Although
GWR improved GLMM predictive accuracy in the k-fold
and spatial CV mainly due to a notable bias reduction, this
was not the case in the environmental CV, where the error
was similar for both statistical modeling approaches
(Table 2).
Decision tree-based models increased the predictive

accuracy reducing MSE by up to 10% compared to XGB,
almost by 40% compared to ANN and GLMM, and by
20% compared to GWR when using k-fold CV. Similar
trends were also obtained using environmental and
spatial CV.

Mapping and accuracy of predictions at the landscape
level
The spatially explicit predictions from each model at the
landscape level resulted in rather similar general patterns
between modeling approaches (Fig. 3). Namely, they
predicted higher productivity in the northern areas of
the study region, characterized by higher altitudes, i.e.,
Pyrenees mountain range. Also, the different models
reproduced similar patterns within these areas according
to variations in local topography. In addition, RF, XGB
and SVM models trained with 15 predictors yielded
higher estimates of mushroom productivity in coastal
areas compared to the same algorithms based on a sub-
set of five predictors. Those coastal areas represented
the least similar bioclimatic conditions compared to the
modeling data when using 12 predictors (Fig. 4 and
Fig. S3), therefore increasing the area of extrapolation

beyond the range of the modeling data. Specifically,
the similarity map based on 12 predictors, shows that
the number of pixels with low and medium similarity
increased by 58% (359 km2) and 50% (847 km2), re-
spectively, compared to the similarity map based on
five predictors. On the other hand, pixels with high
similarity decreased by 28% (1206 km2).
RF, XGB and SVM trained with 15 variables also

resulted in less smoothed predictions of mushroom yield
across the territory compared to estimates based on the
subset of five predictors. Furthermore, SVM produced
illogical predictions below 0 kg·ha− 1·year− 1 in a few
spatially localized areas when five variables were used, and
scattered throughout the territory when using 15 predic-
tors. In contrast, ANN resulted in very smoothed esti-
mates across the territory, contrary to the maps obtained
from all the other machine learning methods (Fig. 3).
In addition, mushroom productivity predictions based

on RF, XGB, SVM and GWR ranged between 0, in the
less productive areas, and approximately 300 and 400
kg·ha− 1·year− 1 (with some maximum peaks reaching 500
and 600 kg·ha− 1·year− 1). Slightly lower productivity was
detected using GLMM and ANN for the most productive
sites, i.e. not exceeding 200 kg·ha− 1·year− 1 in any point of
the study area.

Discussion
To our knowledge, this is the first study addressing a
systematic evaluation of the predictive performance of
alternative statistical and machine learning models to
predict fungal productivity, and one of the few system-
atic comparisons between these different predictive
approaches within the field of ecological research. This
was conducted using one of the largest datasets (if not
the largest one) for fungal productivity monitoring,
based on consistent sampling methodology and taxonomic
identification of mushrooms over more than 20 years on
nearly a hundred permanent sampling plots, randomly dis-
tributed throughout the study region, which contributes to
overcoming most of the practical problems related to the
existence of available data for modeling fungal resources
(Hao et al. 2020).
When dealing with complex ecological interactions

between multiple potential explanatory variables, our
results show that statistical models, especially GLMM,
clearly seem to have lower predictive performance
compared to artificial intelligence-based approaches,
in line with previous research (e.g. Smoliński and
Radtke 2016 and Schratz et al. 2019). They were less
accurate and produced large over- or underestimation
of mushroom productivity (Table 2), making them
unreliable for such purposes compared to other alter-
natives. On the other hand, statistical models can be
good candidates for detecting the most appropriate

Table 2 Mean squared error (MSE) and squared bias (bias2) of
the different machine learning and statistical models depending
on different resampling strategies, namely, k-fold, environmental,
and spatial cross-validation. ran (random forest), xgb (extreme
gradient boosting), svm (support vector machine), ann (artificial
neural network), glmm (generalized linear mixed models) and gwr
(geographically weighted regression). 05 and 15 refer to the
models trained with five and fifteen variables, respectively

Environmental cv Spatial cv k-fold cv

MSE Bias2 MSE Bias2 MSE Bias2

ran.05 22,941 88 18,096 37 12,677 1

ran.15 19,875 33 18,356 10 12,148 2

xgb.05 21,778 178 17,433 62 13,744 1

xgb.15 28,654 148 18,473 93 13,231 1

svm.05 30,901 2556 19,930 1226 14,140 657

svm.15 22,910 1214 21,032 797 12,824 392

ann.05 28,950 5206 25,021 4511 20,128 3087

ann.15 26,815 5619 29,516 8033 24,487 5946

glmm 28,318 9528 24,460 5228 21,086 3394

gwr 28,214 9789 20,590 2553 16,078 204
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variables to be used in machine learning models and
unravel environmental-ecological relationships be-
tween them (Shmueli 2010; Schratz et al. 2019), since
the inherent statistical assumptions that shape these
models allow the relationships between data in a set

of probability distributions to be correctly approxi-
mated. Fitting GWR parameters using a subset of
data according to their geographical location cor-
rected for the strong underestimation of fungal
productivity produced by GLMM models using k-fold

Fig. 3 Landscape-level prediction of total annual mushroom productivity, using ran (random forest), xgb (extreme gradient boosting), svm
(support vector machine), ann (artificial neural network), glmm (generalized linear mixed models) and gwr (geographically weighted regression).
05 and 15 labels refer to the models trained with five and fifteen variables, respectively

Fig. 4 Similarity between the climate conditions of the whole study area and the modeling data. The spatial similarity was based on the number of
sampled data with an environment similar to the prediction environment. The per-pixel similarity was obtained by overlapping the pixel position and
a density map of the sampled data in a two-dimensional space defined by the first two principal components of a principal component analysis (PCA).
The PCA was performed with five and 12 variables according to the machine learning models’ climate predictors (Fig. S3)
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CV. However, it was not possible to correct for the
bias in mushroom productivity prediction in environ-
mentally differentiated areas. By considering spatial
parameters, we were able to find non-stationary pat-
terns across the territory, denoting that climatic con-
ditions do not affect equally at a landscape level.
As demonstrated here, choosing a subset of variables

from statistically significant predictors from statistical
models can help us to deal with some drawbacks. A
problem with selecting a single subset of variables from
a machine learning models is that, due to the algorithm
itself, the significance is adjusted differently and could
be inappropriate for some of them. For example, within
decision tree algorithms, XGB determines the variable to
be used in each node of the tree among the total of
variables of a model, while RF does it within a subset of
them, giving greater probability of being chosen to those
less important variables (Hastie et al. 2001). On the
other hand, the importance of a set of correlated vari-
ables can be distributed among the different predictors
(giving lower importance to each one of them), but the
total importance that this set represents in the predictive
performance is remarkable (Toloşi and Lengauer 2011).
This can cause that when discarding the less important
variables, this set of predictors is omitted, causing a
notorious drop in predictive performance. Moreover, in
a group of correlated variables where there is only one
true predictor (the one that implies real causality),
machine learning algorithms could give similar values of
importance to the whole set of variables (Archer and
Kimes, 2008), actually hiding the true predictor. These
problems may be aggravated when using a larger num-
ber of variables to train the models, where the probabil-
ity of finding groups of correlated variables is higher.
Consequently, each machine learning algorithm give a
different importance to each variable. Therefore, to iden-
tify the variables that could best explain the processes
that occur in natural ecosystems and/or use the variable
importance to select a subset of predictors to train a
more parsimonious model, the above considerations
should be taken into account.
The fact that the prediction error obtained from RF,

SVM, and ANN models was lower when using 15 pre-
dictors in environmental blocking, suggests that models
using a larger number of predictors may be a better
alternative for predicting mushroom productivity at the
landscape level. However, the combination of climatic
conditions represented by model predictors increases
exponentially with increasing number of variables
(Hughes, 1968). This makes it more likely that increasing
the number of model predictors will increase the
mismatch between the modeling data and the climatic
conditions across the whole study area. Therefore,
models with a larger number of predictors will probably

result in greater extrapolation beyond the range of the
modeling data, as shown in our study (Fig. 4 and Fig. S3).
Thus, in the 15-variable models, extrapolation beyond the
range of modeling data occurred over a larger extent of
the study area compared to the models based on five
predictors. Assuming that k-fold CV estimates model
accuracy in areas where climatic conditions are similar to
the modeling data, while environmental or spatial CV esti-
mates model prediction error in climatically different
areas (Roberts et al. 2017; Meyer et al. 2019a), the assess-
ment of model accuracy for prediction across the study
area can be improved based on the similarity in the
climatic conditions between the modeling data and the
whole study area. Thus, random blocking with five-
predictor models informed more appropriately about the
magnitude of the prediction error over a larger area com-
pared to 15-predictor models, because areas with high
similarity increased when using fewer predictors, i.e. from
~ 2800 to ~ 4000 km2. Conversely, the prediction error of
the less parsimonious models will be given by an environ-
mental blocking in a smaller area than in the models with
less predictors. To assess which model is more suitable for
prediction, one needs to consider the extent of the study
area where the prediction error is quantified through
random blocking and through environmental block-
ing, respectively, and not only whether the model
error of more or less parsimonious models is higher
or lower in each blocking strategy. In our study,
when using models with 15 predictors, the entire
coastal areas (east) and the Pyrenees mountain range
(north), showed a low to moderate similarity of
climatic conditions compared to the modeling data.
In contrast, in the 5-predictor models, the coastal
areas with low similarity decreased, while the area
with high similarity of the Pyrenean mountain range
increased considerably. Thus, it seems that parsimony
may be a useful model selection criterion not only
for statistical methods but also for machine learning
algorithms (Coelho et al. 2018).
As noted, statistical models do not seem to be com-

petitive compared to machine learning approaches due
to poor predictive performance. Among the machine
learning models, the ANN approach had the highest
prediction error and also resulted in biogeographic
patterns that did not seem to agree with the expected
climatic variations throughout the study area. In turn,
SVM yielded illogical negative values of mushroom
productivity in some areas. Therefore, the best candi-
date methods are the decision trees-based algorithms,
i.e. RF and XGB. Considering the similarities in the
climatic conditions between the modeling data and the
whole study area, we conclude that the best models will
be RF and XGB models trained with five predictors.
This study shows that, although machine learning
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algorithms allow to train models using a large number
of variables, it may be wise to conduct a more thorough
selection of model predictors prior to training the final
models (Kuhn and Johnson 2013). This further contrib-
utes to improving the selection of the best modeling
approach for prediction and also provides a method-
ology that, in the face of the current paucity of data to
build process-based models (Hao et al. 2020), can be
reasonably used in extrapolation. This is especially
relevant in a context of global change, where climatic
conditions are predicted to change over the years
beyond the historical climatic ranges.

Conclusions
This study compares different statistical and machine
learning models for predicting fungal productivity
biogeographical patterns using a systematic methodology.
Decision tree-based models, namely, RF and XGB,
performed the best in the prediction of fungal productivity
in both environmentally similar and differentiated areas.
Therefore, we recommend the use of these algorithms for
further research involving the prediction of fungal prod-
uctivity, both under the current bioclimatic conditions
and under climate change scenarios. When using these
methods, careful selection of predictors allows for defining
more interpretable and computationally less expensive
models as well as for reducing the environmental space
described by model predictors. Accordingly, the range of
environmental conditions represented by the predictors in
the modeling data can be more similar to the conditions
over the whole study area, leading to reduced extrapola-
tion. As a result, predictions can be more ecologically con-
sistent compared to models with much higher number of
predictors. In this regard, the degree of similarity in the
range of environmental conditions between the modeling
data and the whole study area for prediction is relevant
when selecting the most appropriate blocking strategy for
estimating model error. In more parsimonious models,
where the range of the modeling data may be more repre-
sentative of the environmental conditions over the whole
study area compared to more complex models, the magni-
tude of the prediction error at the landscape level may be
better retrieved through random blocking. In contrast, in-
creasing model complexity may require environmental
blocking for a more proper characterization of the predic-
tion error at the landscape level. Model and variable
selection should therefore also consider the extent of the
area within the study region where the magnitude of the
prediction error can be quantified more appropriately
from either environmental or random blocking. Maps
depicting the similarity between the environmental condi-
tions accounted by the modeling data compared to the en-
vironmental conditions of the whole study area, can be
useful to identify environmentally different or similar

areas to further assist model selection and proper
characterization of the prediction error based on alterna-
tive resampling techniques. In the end, given the multiple
environmental factors driving fungal productivity, we
highlight the importance of applying such methods using
high-resolution environmental information to properly
estimate its biogeographic patterns over large scales.
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