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Abstract: Rivers are among the most biodiverse and endangered ecosystems on earth. In Europe,
concern over their conservation promoted the development of legal instruments for habitat and
species conservation, the Habitats Directive, and water resource management, the Water Framework
Directive. This legal protection demanded the estimate of river ecosystem surface for different
purposes. Different approaches allow river surface to be measured at a low cost. Some accurate
techniques like satellite images or LiDAR (Light Detection and Ranging) do not always work at a
large scale or for streams and small rivers. We discuss here the use of the traditional hydraulics
relationship between drainage area and bankfull width as a good approach to river surface estimation.
We confirm that the use of this cheap and simple method could be a good approach to estimate
river surface. However, we also proved that the development of regional curves, i.e., to establish the
empirical relationship based on study area data, constitutes an essential improvement to estimation.

Keywords: bankfull; habitats directive; water framework directive; freshwater ecosystem; river width

1. Introduction

Freshwater comprises about only 2.5–2.8% of the Earth’s total volume of water, and
running waters are only a small fraction (~0.0001–0.006%) of the world’s freshwater [1–4],
occupying approximately 0.8% of the Earth’s surface [5]. They host a huge richness of
habitats, and as a result, around 100,000–150,000 [5–7] out of approximately 1.81 million
species [8], 5.55% of the total number [5,9], inhabit freshwater ecosystems, even though
freshwater covers only around 0.8% of the Earth’s surface [7]. Accordingly, these ecosys-
tems are considered biodiversity hotspots [7].

Rivers support some of the most biodiverse ecosystems in the world and provide
essential ecosystem services to society [10], but, at the same time, freshwater ecosystems
may be the most endangered ecosystems in the world [6], and rivers are between the
most threatened [11,12] due to overexploitation, pollution, regulation, climate change,
drainage-basin degradation, non-native species, and synergistic impacts [6,13]. As a
consequence, this extensive habitat deterioration is causing a decline of biodiversity in
freshwater ecosystems far greater than in the most affected terrestrial ecosystems [14].

Flow and its regime are considered as the main structuring factors of stream communi-
ties [15,16], and several studies have demonstrated a relationship between the hydrological
regime and biological communities [17–21]. However, it is estimated that around 50% of
the river volume is currently altered by either flow regulation or fragmentation, and it is
expected to increase to 93% with the construction of new major hydropower dams [22].
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Expanding hydropower is considered as one of the 12 pressing and emerging threats to
freshwater biodiversity [11]. In Europe, most rivers are largely impacted and significantly
modified by anthropogenic structures like dams, weirs, and barrages [23], negatively
impacting the ecological processes and aquatic species [24]. The rivers also suffer from
fragmentation by barriers to free flow [7,25], causing loss of habitat, altering the natural
flow regimen, and reducing the connection between the main channel and floodplain
due to flow regulation [23]. Hydrological variation caused by weirs and barrages is a
substantial contributor to aquatic habitat alteration and community disturbance by altering
the longitudinal continuity of lotic ecosystems, the lateral interaction with floodplains,
the interchange with adjacent groundwaters, and the natural variation in their relative
magnitude over time [26–28]. As a result, European rivers suffer from intense morphologi-
cal habitat degradation, which is considered one of the most important river ecosystem
alterations in Europe [29]. Pyrenean rivers are not an exception, as they are highly affected
by reservoirs that impound about one-third of the mean annual runoff [30].

In this context, our societies have called for increased conservation of our ecosys-
tems. Responding to these requirements, the Habitats Directive (HD), the main legislative
work of the European Union’s nature conservation policy, and the Water Framework Di-
rective (WFD), the main legislative work regarding water resource management, have
been developed to conserve our ecosystems. Both directives, from different perspectives
and approximations, have common objectives and links [31]. These legal responsibilities
demand the estimation of river size and its evolution at different scales. On one hand, the
Habitats Directive requires surface estimation for the different running water habitats every
six years [32,33]. On the other hand, the Water Framework Directive demands the size
estimation of each WFD management unit [34], and by evaluating the hydromorphology
of ecosystems the connectivity and continuity of these ecosystems are indirectly measured.
Therefore, a method for river size estimation for all streams and rivers at a large scale is
mandatory in order to achieve the legal requirements. However, the lack of a common
method and some interpretation and implementation problems have led to calls for an
established protocolized method for monitoring running water habitats.

River size is a key parameter related to several river ecosystem processes such as flux
exchange with the atmosphere [35,36], species richness [37], and nutrient removal [38].
Many different measures and approximations have been used to estimate river size [39], e.g.,
length [2,37,40], drainage area [36,41], and river surface. At a large scale, easy measures like
drainage area or length have been traditionally widely used [39]; however, new techniques
like satellite images can be used to measure river surface [35,42]. As of yet, these estimation
methods are limited by pixel resolution, allowing measurements for rivers wider than
30 m [35,42]. Other techniques, like LiDAR and photogrammetry, are limited at a large scale
by their computing processing time [43,44]. Thus, several methods have been proposed
to estimate river width and river surface [35,36], but none of them seems to be widely
applicable with satisfactory results and with an optimal cost–benefit ratio.

When the river ecosystem surface is estimated, it is necessary to delimitate its lateral
extent, which can refer to the water channel, the bankfull, the riparian zone, or even
the floodplain. Estimation of the bankfull and water channel at a large scale has been
widely developed [35,36,42,45]; however, riverine and floodplain surface estimation has
only been developed at a local scale [46,47]. In this study, we considered the bankfull
width as the lateral extent for the river ecosystem assessment due to two main reasons: (1)
Ecosystem classifications usually differ riparian and floodplain ecosystem from running
water ecosystems, e.g., habitat types of the HD [48]; (2) although the river channel and
floodplain could be considered as components of a single dynamic system [27], the main
material and energy of most European rivers are derived through local production and the
riparian zone [49]. Therefore, bankfull width is indeed a good proxy for river lateral extent.

Bankfull width has been measured by different methods in stations or small sections
including field measurements [50,51], high-resolution digital elevation models, and pho-
togrammetry [43,52]. However, these measures only have been realized in stations or
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small sections. At a large scale, the most widely accepted estimation for bankfull channel
geometry relates river width to discharge or drainage area in a power law model [42,53].
These power laws have been largely estimated in the USA at a regional scale and for the
entire country [54–56]. However, few studies have estimated them in Europe and only
at a regional or local scale [51]. A global-scale bankfull estimation method was recently
developed but only for rivers wider than 30 m [42].

Therefore, the main aim of this study was to analyze the size of freshwater lotic
ecosystems from different approximations and methodologies to determine which of the
existing methodologies are the most accurate and adequate by identifying the advantages
and disadvantages of these approximations and, as a consequence, quantifying the size
of the freshwater lotic ecosystem to achieve the mandatory requirements of the HD and
WFD by providing a proved tool that can be adapted to local contexts, enabling easy
implementation.

2. Materials and Methods
2.1. Study Area and Data

This study was developed for Pre-Pyrenean and Pyrenean rivers, an ecosystem type
defined in the methodologies for the monitoring of the conservation of habitat types in
Spain [57]. This ecosystem type is defined based on physical, chemical, and biological
variables and covers rivers along approximately 390 km of the southern slopes of the
Pyrenees [57] (Figure 1). They are small rivers and streams located in altitudes between
700 and 900 m with a mean discharge between 1.37 and 4.93 m3 · s−1 and a drainage area
between 4.5 and 3800 km2. A total of 232 management water bodies defined according to
the WFD are classified as this type of ecosystem.

(a) (b) (c)

(d)

Figure 1. Study area. (a) Location of the analyzed rivers, Pre-Pyrenean and Pyrenean, in Europe. (b,c)
Examples of sections, in red, of legal bankfull river boundaries according to national cartography [58].
(d) Locations of all Pre-Pyrenean and Pyrenean rivers are marked with dark blue, and the locations
of all sections in red. Coordinates in meters, EPSG: 25831.

Bankfull widths for 76 river sections, or reaches, of 1–2 km were collected from the
national cartography of legal boundaries delimitation [58]. This digital maps establish
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the bankfull channel limits based on historical and actual orthophotos, digital elevation
models, and bankfull discharge [59]. However, they have only been developed for a few
rivers. For each of the 76 water bodies where these guidelines have been established, we
randomly selected a point and created a buffer of 1 km to delimitate and standardize a
river section. For every section, we obtained the bankfull limits via the national guidelines
of legal river boundaries (Figure 1).

2.2. Methods: Size Estimation

The surface of each polygon delimitated by the bankfull channel banks was calculated
(Figure 1). This surface was considered as the real bankfull channel surface of each section
(Sb). We extracted the centerline of each section using a skeletonization procedure of
the bankfull channel bank lines. The length (L) of each centerline was calculated as an
approximation of the river ecosystem size, a classical and probably the most widely used
approximation of river size. The bankfull width of each section (Wb) was calculated as the
median of the measurements of Wb every 50 m within each reach. The drainage area of
each section (A) was calculated as the mean value of all sections. We used the drainage area
raster developed by the Spanish government for its estimation [60]. All these operations
were conducted using ArcMap 10.5 [61].

At a large scale, the most widely accepted estimation method for bankfull channel
geometry relates river width (W) to discharge (Q) or drainage area (A) in a power law
model (Equations (1) and (2)) with two empirical factors, α and β [51,54–56,62–73]. All the
power laws found in the bibliography were collected and published (see Data Availability
Statement) to analyze the difference between them and the regional power law of our
study area.

W = α·Qβ (1)

W = α′·Aβ′ (2)

First, we estimated the power law that relates bankfull width and drainage area for our
study area. We used the median value of the bankfull width (Wb) and the mean drainage
area (A) of each section to estimate the α’ and β’ coefficients. To develop the power law
for our study, we log-transformed both variables and estimated α’ and β’ through simple
linear regression, i.e., Y = β0 + β1 X, where Y = log10 (Wb), X = log10 (A), and β0 and β1
are regression parameters (intercept and slope, respectively). Thus, the coefficient and the
exponent of the power law relation (Equation (2)) are α’ = 10β0 and β’ = β1, respectively.

To explore the relationship between bankfull channel width and drainage area, we
used multiple linear regression models in combination with mean annual precipitation,
channel slope (primary controls on discharge and channel morphology), and elevation as
explanatory variables of channel width [56]. Mean annual precipitation in mm (MAP) data
were collected from WordlCilm2 [74]. Mean altitude (MA) in m and mean channel slope
(MS) were obtained using a digital elevation model of 5 m pixels. All variables, except
elevation, were log-transformed, yielding a multiplicative effects model of the form [58].
We ranked the models using the corrected Akaike information criterion (AICc) and selected
the model with the lowest AICc (∆AICc < 2).

To estimate the bankfull channel surface for each water body, the average bankfull
width (Wbe) was calculated for each section using our regional power law, considering
the mean drainage area of the section (A). Then, we estimated the bankfull surface (Sbe)
for a water body as the product of the centerline length (L) and Wbe, considering the
section as a parallelogram. This operation was repeated for all the power laws found in the
bibliography to estimate bankfull surface (Wbe) for each one.
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2.3. Methods: Statistical Analysis

We used multiple linear regression to explore the differences between the real bankfull
surface (Sb) of each section and the estimated surface (Sbe) according to our regional power
law. We included the length of the centerline (L) and median width (Wb) of the section,
as well as the sinuosity index (SI) [2] (primary controls on size, width and length, and
channel complexity, sinuosity index). We ranked the models using the corrected Akaike
information criterion (AICc) and selected the model with the lowest AICc (∆AICc < 2). All
data and results are shown in Supplementary Materials 1.

Finally, we compared the differences between the real bankfull surface (Sb) and the
estimated surfaces (Sbe) via linear regressions. The Sb and Sbe values were previously log-
transformed to achieve residual normality, linearity, and homoscedasticity. The resultant
linear models had the expression log10 (Sb) = m + n log10 (Sbe), where Sb and Sbe are the
real and the estimated bankfull surface, and m and n are the model parameters (intercept
and slope, respectively). If we remove the logarithms, the resulting expression is Sb = 10m

Sben. Thus, when m is nearer to 0, and n to 1, the estimated values of Sb are more similar to
the real Sbe.

All statistical analyses were carried out by using R version 4.0.2 [75].

3. Results

The relationship between the logarithms of Wb and A showed a significant increase in
log10 (Wb) with the increase of log10 (A) (Figure 2) (F1,74 = 62.89, p < 0.001, r2

adjusted = 0.45).
With the linear model coefficients, we calculated α and β values of Equation (2) for our
regional data. The regional power law relationship is as follows:

Wbe = 5.531·A0.362 (3)

Figure 2. Relationship between the logarithm of the drainage area (A) in km2 and the logarithm of
the real bankfull width (Wb) in m at the 76 studied sections. The blue line shows linear regression
(F1,74 = 62.73, p < 0.005, r2

adjusted = 0.46) with 95% CI (grey).

The multiple linear regression including in the relationship log10 (MAP), log10 (MS),
and MA showed an improvement in the relation between log10 (Wb) and log10 (A) when
log10 (MS) was included in the model (Table 1), although the model with only log10 (A)
as an explanatory variable was roughly equivalent to the best model, and it was the only
significant explanatory variable for all models (Table 1).
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Table 1. Comparison of Akaike information criterion (AICc) deltas and weights for linear models
testing the effects of drainage area (A), mean channel slope (MS), mean annual precipitation (MP),
and mean altitude (MA) and response (bankfull Width, Wb). Shown are the number of parameters
(K), the AICc, the ∆AICc, AICc weight (wAICc), and the evidence ratios (ERs). The best model
and models roughly equivalent to the best (∆AICc ≈ 2 or lower) are highlighted in bold. The only
significant explanatory variable in all models is log10 (A) (p < 0.005). The sample size is 76 for
all models.

Candidate Model K r2
adj AICc ∆AICc wAICc ER

log10(Wb) ~ log10(A) + log10(MS)
+ log10(MP) + MA 6 0.45 −232.26 3.83 0.10 6.80

log10(Wb) ~ log10(A) + log10(MS)
+ log10(MP) 5 0.45 −233.99 2.10 0.23 2.86

log10(Wb) ~ log10(A) +
log10(MS) 4 0.46 −236.66 0 0.67 1

log10(Wb) ~ log10(A) 3 0.45 −236.03 0.07 0.65 1.03

The multiple linear regressions developed to assess the differences between the es-
timated bankfull channel surface (Sbe) and real bankfull surface (Sb) showed that size
and river complexity influence the estimation error. As shown in Table 2, the most par-
simonious model only included Wb and SI (F2,73 = 94.35, p < 0.001, r2

adjusted = 0.72). The
difference between Sb and Sbe was positively correlated with Wb and SI. The surface was
overestimated (Sbe > Sb or Sb − Sbe < 0) in sections with small Wb and underestimated
(Sbe < Sb or Sb − Sbe > 0) where Wb was high (Figure 3a). SI showed a slightly positive
correlation with the estimation error. The surface of complex rivers (SI > 1.5) was more
frequently overestimated than the surface of less complex rivers (SI ≈ 1) (Figure 3b).

Table 2. Comparison of AICc deltas and weights for linear models testing the effects of bankfull
width (Wb), sinuosity index (SI), river length (L), and bankfull channel Surface (Sb) and response
(differences between real and estimated bankfull channel surface, Sb - Sbe). Shown are the number of
parameters (K), the AICc, the ∆AICc, AICc weight (wAICc), and the evidence ratios (ERs). The best
model and models roughly equivalent to the best (∆AICc ≈ 2 or lower) are highlighted in bold.

Candidate Model K r2
adj AICc ∆AICc wAICc ER

(Sb−Sbe) ~ Wb + SI + L + Sb 6 0.71 1482.24 4.26 0.08 8.43
(Sb−Sbe) ~ Wb *** + SI * + L 5 0.71 1480.10 2.12 0.23 2.89
(Sb−Sbe) ~ Wb *** + SI ** 4 0.71 1477.97 0 0.67 1
(Sb−Sbe) ~ Wb *** 3 0.68 1485.79 7.81 0.01 49.70
(Sb−Sbe) ~ SI 3 0.01 1571.23 93.25 0.00 >100

Significance code for variables: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘’ 1.

Lastly, we compared the results of the bankfull channel surface estimation obtained
by our regional curve with the results obtained by the other power laws. Figure 4 shows
the regional curve as one of the most similar to the real values. Approximately 50% of the
linear models between log10 (Sb) and log10 (Sbe) had a higher r2

adjusted than the model in
which Sbe was estimated by our regional curve (F1,74 = 51.24, p < 0.001, r2

adjusted = 0.40) (the
highest r2

adjusted is 0.41). However, the mean differences between Sb and Sbe estimated by
the regional curve were the third-smallest.
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Figure 3. (a) Relationship between the differences between Sb and Sbe in m2 and the real bankfull width (Wb) in m at the
76 studied sections. The blue line shows linear regression (F1,74 = 158.4, p < 0.005, r2

adjusted = 0.68) with 95% CI (grey).
(b) Relationship between the differences between Sb and Sbe in m2 and the sinuosity index (SI) in m at the 76 studied
sections. The blue line shows linear regression (F1,74 = 1.52, p > 0.05, r2

adjusted = 0.01) with 95% CI (grey).

Figure 4. Relationships between log10 (Sb) and log10 (Sbe) in m2 at the 76 studied sections for the
Sbe estimated by the different regional curves. The black line shows the linear regression where Sbe
was estimated by our regional curve (F1,74 = 51.24, p < 0.001, r2

adjusted = 0.40). The red line shows the
linear regression considering the Sb values for Sbe. Grey lines show all the different relationships
between Sb and the Sbe estimated for the different curves.

4. Discussion

As expected, and confirming previous similar studies, the drainage area is intensively
related to width, and our results have shown that the estimated bankfull channel surface
is directly related to the real bankfull surface, and this estimation significantly improves
when the mean channel slope is included in the model. Moreover, the development
of a regional power law based on real data improved the estimation. However, the
surface was overestimated and underestimated due to river size and complexity. On one
hand, upstream sections were normally overestimated, whereas downstream sections
were underestimated (Figure 3a). On the other hand, sections highly sinuous were more
frequently underestimated (Figure 3a).
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We demonstrate the utility of power laws relating drainage area and bankfull width
as a fast assessment of river ecosystem size for streams and small rivers at a large scale,
confirming this method as a tool of easy implementation. Other studies indicated the
importance of developing power law relationships between bankfull channel width and
drainage areas for preliminary channel design for restoration projects [73] or modeling
habitat availability and suitability for fish [76]. According to our results, these estimations
are robust and can be consolidated as an optimal approximation of river size with a low cost–
benefit ratio, at least until LiDAR and remote sensing can be optimized for these purposes.
We found that the best obtained results corresponded to the power law established with
our data within the regional context of the Pre-Pyrenean and Pyrenean range. Thanks
to these results, we can state that using regional power law models is the most optimal
approximation, and in case comparing with other regions or models is required, models
can be easily compared by recalculating the values. As outlined, using a regional power
law provides the best results. However, in case it is not possible to use a regional power
law due to the lack of digital terrain models or real data, it is also possible to use a power
law model from similar ecoregions.

Our reported value for α could be considered as high compared with the values
found in the bibliography, the 13th largest α detected/historically detected, whereas the
β value is near the median value of all β values registered, 0.36 (see Data Availability
Statement). High values of α, such as those estimated in our study area, are related to high
pluviometry [56]. The mean pluviometry for all ecosystem sizes is 1273.84 ± 213.84 [57],
a value that could be considered as relatively high and could be related to the fact that
the Pyrenees is a mountain range that links the Atlantic Ocean with the Mediterranean
Sea with a clear west–east gradient of humidity and pluviometry. The β value is lower
the less the width grows with the watershed area, but this relationship can be affected
by the degree of alteration of the river basin. It has been proved that human impacts can
reduce β values [56,69,70]. On the other hand, high β values have also been related to
climatic conditions, e.g., arid zones [56]. In our case, the high estimated β value is coherent
with other studies [56,70] because most of our studied rivers can be considered as altered
by dams, hydropower stations, etc. [30]. Moreover, the hydrological alteration and flow
regulation caused by these perturbances can influence the estimated regional power law,
increasing the β value [70].

To improve our model, we included in the power law other factors that are related
to discharge (mean annual precipitation) and channel morphology (mean channel slope
and mean altitude). We found only slight improvement when we included mean channel
slope in the model (∆AICc < 2). This result is coherent since the chosen ecosystem type
was defined partly based on physical variables such as discharge, altitude, or slope [57].
Therefore, it is logical that the relationship was not significantly improved based on these
variables because they are intrinsically included.

As previously mentioned, the regional power law provides the most optimal results.
However, this is an imperfect approximation, and the comparison between the real and
the estimated bankfull channel area (Figure 3) shows an underestimation in wider sections
that are located in downstream reaches and an overestimation in small lotic ecosystems
(Figure 3). Degradation of the riverbank often causes a widening processes [77], which
could explain the observed underestimation, i.e., the downstream reaches are wider than
expected. Most of the areas surrounding rivers in the low parts of our study area are
occupied by cultures, whereas the high areas are mostly forest in a mountainous area where
rivers flow through narrow valleys where widening is not possible and overestimation
of Wbe is explained. According to these results, altitudinal gradient and orography could
explain these over- and underestimation results. By including mean channel slope (MS) in
our model, we obtained a good model (ER = 1) for explaining river width (Table 2). This is
coherent with the mentioned under- and overestimation problems because upstream rivers
have a higher MS than lower reaches. The surface was slightly underestimated in more
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complex sections with higher SI. Complex rivers had a higher heterogeneity of width [78],
which was not captured in the estimations producing underestimations.

As is shown in Figure 4, the variation in the empirical values of the power laws
triggered a huge variability in surface estimation. This variation has been reported in
several studies developed in the USA [54–56], and it has been demonstrated that different
factors influence this relationship, e.g., human alteration [69,70], riparian vegetation [69],
riverbed material [56], and climate and topographic factors [56]. Therefore, it is important
to develop a power law at a regional scale for river size estimation when possible. However,
all estimated bankfull channel surfaces are significantly related to the real surface and
could be useful for comparison of the river size.

These results confirm that regional power law models are superior to other models that
have been developed for specific hydrogeological contexts. Of course, even in a regional
context, we can expect variability and errors in the estimation as we have observed. For
this reason, the use of regional power law models is conditioned by the characteristics of
the region; therefore, these regions must be internally homogenous with similar climate,
geology, pluviometry, and, of course, orography. However, this fast approach to river size
might be replaced in the future by more accurate new techniques such as LiDAR or satellite
images that currently present limitations [44]. Indeed, recent studies have demonstrated
the precision of satellite images to estimate bankfull and water channel at a large scale
for rivers wider than 30 m [35,42] or accurate measurements derived from LiDAR [79].
However, these methods still present limitations that restrain their use at a large scale
for narrower rivers or sections. As a consequence, using regional power laws could be
considered as an optimal temporary solution until these more accurate techniques can be
applied to most of the lotic ecosystems. With the application of this method, we can address
the lack of surface data from lotic ecosystems since the Habitats Directive was approved
30 years ago. Classical methods like river length also should be calculated because of
historical reasons and due to the rivers mainly comprising a lineal ecosystem where the
most important processes and patterns take place in longitudinal axes [80–82].
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