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Abstract: Cryphonectria parasitica (Murrill) M.E. Barr (Sordariomycetes, Valsaceae) is the causal agent
of chestnut blight. This disease is a major concern for chestnut cultivation in Europe. The fungus
colonizes vascular tissues and evolves generating cankers causing severe dieback and the death
of the tree. Excised and debarked well-lignified shoots of 28 C. sativa genotypes (assay A) and
of 10 progenies (assay B) were inoculated with C. parasitica strain FMT3bc2 (vcg: EU2). Fungal
growth was measured along the longitudinal axis on the 3rd and 6th days after inoculation. Results
indicated the inoculation methodology works and the results were clear after 6 days. Differences in
susceptibility to chestnut blight among C. sativa trees of Montseny have been detected both at the
individual genotype level and at the progeny level. Nineteen genotypes and four progenies showed
a susceptibility to Blight not significantly different from C. mollissima. The methodology was easy to
apply in extensive/preliminary selection screenings to assess the susceptibility of C. sativa materials
to the Blight.

Keywords: Castanea sativa; Castanea sp.; chestnut blight; debarked budsticks; Montseny-Spain

1. Introduction

The Ascomycete fungus Cryphonectria parasitica (Murrill) M.E. Barr (Sordariomycetes,
Valsaceae) is the causal agent of chestnut blight, one of the most devastating diseases
affecting Castanea sp. worldwide. The disease in Europe was first detected in Italy in 1938
(EPPO current status: Present) [1,2] from where it spread to the neighboring countries of
Switzerland (1948; widespread), Slovenia (1950; restricted distribution), and France (1956;
restricted distribution) [3,4]. The disease is currently present in Spain (1947; restricted distri-
bution), Croatia (1955; widespread), Albania (1967; widespread), Serbia (1975; widespread),
Portugal (1989; widespread) and Germany (1992; restricted distribution), Azerbaijan (2004;
present), United Kingdom (2011; restricted distribution), and Belgium (2014; restricted
distribution) [1,5]. Most of the European C. parasitica populations seem to have originated
from single introductions since they have reduced genetic diversity [6].

Spore dispersal by air is a major dissemination mechanism of fungal pathogens [7,8].
In the case of C. parasitica, air-borne spores usually penetrate above-ground parts of the
host through bark wounds (e.g., pruning, wind, hail, etc.) in shoots or stems. The fungus
colonizes vascular tissues causing progressive wilting, and severe reduction in fruit produc-
tion. Later symptoms include orangish necrotic areas in the bark [2,9]. The necrosis evolves
generating cankers that usually girdle branches or even the trunk causing severe dieback,
and finally the death of the tree [10,11]. Cankers harbor fruiting bodies of the fungus that
disseminate their spores throughout the chestnut stands. The fungus infects Castanea sativa
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Mill. (Europe), Castanea dentata (Marshall) Borkh. (America), as well as Castanea crenata
Siebold and Zucc. and Castanea mollissima Blume (Asia) at any age. Among these host
species, C. sativa and C. dentata are considered the most susceptible since C. mollissima and
C. crenata exhibit some tolerance to the disease probably caused by ancient co-evolution
with the pathogen in their native range [12,13].

This disease is a major concern for chestnut cultivation in Europe as there is currently
no effective cultural or chemical control and no resistance has been found in C. sativa
species [14]. To find a way out of chestnut blight, two main strategies are being consid-
ered: biocontrol through virus-induced fungus hypovirulence, and prevention by breeding
disease-resistant genotypes. The use of RNA mycoviruses (i.e., Cryphonectria hypovirus 1;
Hypoviridae) has resulted in highly effective in Europe [1], thus becoming one of the most
successful alternatives for controlling the disease in natural stands. This biocontrol method
is based on inoculation of virus-infected fungal strains belonging to the same vegetative
compatibility group/s (vcg) than those causing disease in the target stand [15,16]. This
infected—and therefore weakened—strain, inoculated in diseased trees, naturally transfers
viruses by mycelial anastomosis to virulent strains which will become in turn hypovirulent.
Mycovirus-infected strains of C. parasitica are not able to severely damage the tree allowing
it to withstand the infection with minor symptoms [17,18]. On the other hand, breeding
resistant genotypes of chestnut for planting is probably the most promising preventive
measure to be implemented for woody croplands and afforestation. The transfer of resis-
tance from Asian chestnuts to American or European species has been carried out in several
programs but reaching the desired fruit quality requires several backcrosses that lengthen
the selection process considerably [19,20]. Finding resistance or lower susceptibility traits in
natural populations of C. dentata, the American chestnut, has proven possible [21] although
conducting this work by inoculation of standing trees requires a great deal of work that
is often not feasible. The evaluation of tolerance/resistance to biotic or abiotic injuries
under controlled conditions on parts of plants/trees has proven to be an advantageous
practice when many individuals/samples are to be tested. Thus, in different hardwoods
similar approaches have been used, such as on Juglans sp. to study frost resistance [22] or
more specifically on chestnut to establish levels of susceptibility to Phytophthora spp. [23].
Moreover, Rodríguez and Colinas [24] showed that estimating chestnut susceptibility to C.
parasitica by means of inoculation on excised shoots was feasible and the mycelium grew
as expected under controlled conditions.

In consequence, the aims of this study were: (i) to evaluate the tolerance to chestnut
blight of some C. sativa genotypes from a Spanish local population (Montseny-Northeast of
Catalonia) in excised shoots, and (ii) to study this tolerance in seedling genotypes of the
same origin installed in a progeny test.

2. Materials and Methods
2.1. In Vitro Inoculation: Budstick Assay
2.1.1. Assay A

Tolerance to chestnut blight among C. sativa genotypes was evaluated in vitro by
inoculating a virulent strain of C. parasitica in debarked well lignified shoots. One-year-old
budsticks of 28 C. sativa genotypes (Table 1) were removed from healthy mother plants
installed in a quarantine greenhouse of Gimenells (Lleida, 41◦44′45.6′′ N; 0◦23′39.1′′ E)
at IRTA experimental station in July 2020. The harvest date was adjusted to the optimal
physiological state of chestnut for the susceptibility test [24]. Budsticks (12–15 cm long)
were kept at 4 ◦C covering the apical ends with Parafilm© while the opposite side was sub-
merged in distilled water until processed. Moreover, lignified shoots from two genotypes of
C. mollissima were collected at Lourizan Forest Center of Galicia (42◦24′35′′ N—8◦00′12′′ W)
and sent overnight to be used as a tolerant control (Table 1).
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Table 1. Description of genotypes used in the in vitro assays (A and B). G: mean daily growth of the Cryphonectria parasitica
colony from inoculation to the sixth day of incubation along the longitudinal axis. Data for genotypes of Castanea mollissima
in assay A and B are shown in the left and right sides of the bar (/) respectively. n: number of replicates per genotype. Mean
values and standard deviation are shown.

Species Assay Genotype/Progeny N Genotypes n Cutting Diameter (cm) G (mm/Day)

Castanea mollissima A/B
M2 1 8/4 0.84 ± 0.06/0.79 ± 0.14 3.9 ± 1.2/5.8 ± 2.5

M5M 1 8/4 1.14 ± 0.05/0.60 ± 0.06 4.6 ± 1.4/4.6 ± 2.7

Castanea sativa

A BRL02 1 8 1.41 ± 0.08 5.6 ± 1.2
A BRL03 1 8 0.90 ± 0.03 4.4 ± 1.7
A BRL06 1 8 0.98 ± 0.13 4.9 ± 1.4
A CNV01 1 8 0.91 ± 0.07 5.8 ± 1.2
A FGM01 1 8 1.21 ± 0.08 5.4 ± 1.5
A FGM04 1 8 1.43 ± 0.15 5.4 ± 1.8
A FGM11 1 8 0.93 ± 0.10 6 ± 1.2
A MSY03 1 8 0.95 ± 0.06 5.8 ± 1.7
A MSY04 1 8 0.89 ± 0.09 5.4 ± 0.9
A MSY08 1 8 0.91 ± 0.04 5.6 ± 2.2
A MSY09 1 8 0.93 ± 0.08 5.3 ± 1.8
A MSY10 1 8 1.06 ± 0.08 3.9 ± 1.6
A MSY11 1 8 1.08 ± 0.04 5.5 ± 0.7
A MSY12 1 8 1.16 ± 0.38 5.9 ± 0.8
A MSY14 1 8 1.24 ± 0.12 4.3 ± 2.0
A PO11 1 8 1.13 ± 0.13 4.5 ± 1.3
A RLL05 1 8 1.03 ± 0.12 4.5 ± 1.1
A RLL10 1 8 0.96 ± 0.20 6.4 ± 1.1
A SPV05 1 8 1.35 ± 0.06 5.9 ± 1.8
A VLD12 1 8 1.01 ± 0.08 5.7 ± 1.1
A VLD14 1 8 1.23 ± 0.10 5.4 ± 1.3
A VLD22 1 8 1.14 ± 0.05 5 ± 0.9
A VLD29 1 8 1.11 ± 0.04 5.4 ± 1.0
A VLD30 1 8 1.19 ± 0.10 4.4 ± 1.7
A VLD31 1 8 1.00 ± 0.11 6 ± 1.5
A VLD32 1 8 1.02 ± 0.04 5.3 ± 1.6
A VLD33 1 8 1.11 ± 0.06 6.1 ± 1.3
A VLD34 1 8 1.21 ± 0.11 5.5 ± 1.9
B CS-49 23 4 0.71 ± 0.13 6.7 ± 1.7
B CS-51 14 4 0.69 ± 0.11 6.9 ± 1.8
B CS-52 12 4 0.69 ± 0.11 8 ± 1.4
B CS-54 17 4 0.71 ± 0.09 6.9 ± 1.5
B CS-55 24 4 0.69 ± 0.11 7.7 ± 2.1
B CS-56 14 4 0.69 ± 0.12 8.1 ± 2
B CS-57 5 4 0.72 ± 0.14 8.8 ± 1.3
B CS-60 20 4 0.68 ± 0.11 7.1 ± 2.1
B CS-61 18 4 0.66 ± 0.12 7.2 ± 1.8
B CS-62 18 4 0.69 ± 0.09 6.9 ± 2

Inoculation was performed according to the methodology of Rodríguez and Coli-
nas [24] with minor modifications. Each budstick was cut in 7 cm sections (8 replicates
per genotype; 224 samples of C. sativa and 16 samples of C. mollissima) (Figure 1) in the
laboratory with disinfected pruning scissors. The diameter of each cutting sample (d) was
measured with a digital caliper and the section manually debarked using a sterile scalpel.
Fungal cultures of C. parasitica strain FMT3bc2 (vcg: EU2) grown at room temperature
for 5 days in PDA medium (potato-dextrose-agar 3.90% w/v; Biokar) were used as an
inoculum source. More specifically, a 5 × 5 mm plug of a solid medium plug with fresh
mycelium from the edge of the colony was placed in the center of each debarked shoot
section with the mycelium side in touch with wood tissue (Figure 1).
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Figure 1. Outline of inoculation methodology. (a) inoculation protocol (1: field budsticks; 2: budstick sections; 3: de-
barked budsticks); (b) inoculated budsticks with C. parasitica and tray incubation; (c) detail of fungus growing in the
debarked budstick.

Inoculated samples were labeled with white tape and randomly placed in disinfected
plastic trays lined with filter paper (Figure 1). Each tray was then moistened by spraying
deionized water and covered with a plastic film to maintain high relative air humidity
inside the tray. The trays were protected with a sheet of paper and incubated at room
temperature (24 ± 2 ◦C) for one week. Whenever the filter paper became dry, deionized
water was sprayed in the trays. Fungal growth was measured along the longitudinal axis
(mm) on the 3rd and 6th days after inoculation.

2.1.2. Assay B

In parallel to assay A, a total of 166 C. sativa genotypes belonging to 10 progenies
(Table 1) were used for an additional in vitro study. Tree shoots (4 replicates per seedling)
were collected in a progenies test orchard located in the Parc Natural i Reserva de la
Biosfera del Montseny (41◦45′46,6” N; 2◦25′39,1” E) and were processed and incubated as
previously described for bioassay A. The same two C. mollissima genotypes, four shoots
of each one, were also used as control samples. The fungal growth rate was calculated as
previously explained.

2.2. Statistical Analysis

Data obtained after six days of incubation were analyzed for both in vitro assays using
the programming environment R [25]. We used the average value of the mean daily fungal
growth rate for a six-day incubation period (G, mm/day) of both C. mollisima genotypes
(i.e., “M2” and “M5M”) as reference for model computation (control). This was tested by
fitting two preliminary generalized linear models (GLMs) (one per dataset) in order to
evaluate whether G significantly varied between both C. mollissima genotypes.

In assay A, a GLM was fitted as a null model including the mean daily fungal growth
rate (G) as a response variable and the genotypes as an explanatory factor. Then, a linear
mixed-effects model (LMM) was computed using the “lme4” package in R [26] including
G as the dependent variable, genotype as a fixed factor and the diameter of the cutting
(d) as a random factor (Table 2). Both models were compared using Akaike’s Information
Criteria (AIC) [27] using the “AICcmodavg” package in R [28]. The most parsimonious
model was selected using AIC and the result of the model comparison using the χ2 test.
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Table 2. Results of models (GLMs and LMMs) describing the variation of mean daily lesion growth
(G; mm/day) with progeny, seedling-genotype, and diameter (d; mm) in the in vitro assay. Random
factors of LMMs are shown in brackets. n: number of observations used for model fitting. Selected
model in bold.

Assay Model n Description Df logLik Deviance AIC ∆AIC

A Ma0 232 G~genotype 30 −403.73 807.46 867.46 0
Ma1 G~genotype + (d) 31 −403.73 807.46 869.46 2

B

Mbp0

664

G~progeny 12 −1355 2710 2734 0
Mbp1 G~progeny + (d) 13 −1351.80 2703.70 2729.70 −4.30
Mbg0 G~seedling-genotype 167 −1161.40 2322.70 2656.70 0
Mbg1 G~seedling-genotype + (d) 168 −1161.40 2322.70 2658.70 2

In assay B two different model sets were fitted (Table 2). A null GLM was computed
with G as a response variable and progeny as an explanatory factor. Then, an LMM
with the same variables as well as diameter as a random factor was computed (Table 2).
Analogous models (i.e., null and LMM) were fitted for the same dataset including the
seedling genotypes instead of progenies as explanatory variables. Definitive models were
selected following the same statistical indicators as described for assay A.

3. Results

The generalized linear model fitted for assay A showed significant variation in G
among the evaluated materials (p-value = 0.03) (model Ma0). The LMM fitted to dataset
A including diameter as a random factor (i.e., Ma1) retained the significance of genotype
(p-value = 0.03). The most parsimonious model (Ma0) did not show conclusive differences
with Ma1 according to AIC values (∆AICMa1-Ma0 = 2; Table 2), so we compared them with
a χ2 test (p-value = 1). Consequently, Ma1 was selected as the most explicative model for
assay A (Table 2). The parameters of the model showed that in nineteen of the assayed
genotypes (i.e., “BRL02”, ”BRL03”, ”BRL06”, “FGM01”, “FGM04”, “MSY04”, “MSY08”,
“MSY09”, ”MSY10”, “MSY11”, “MSY14”, “PO11”, “RLL05”, “VLD14”, “VLD22”, “VDL29”,
“VLD30”, “VLD32” and “VLD34”) the daily lesion growth rate (G) was not significantly
different from the control C. mollissima (Figure 2).
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In the dataset of assay B, two null models (GLMs) were computed to evaluate vari-
ations of G in respect of progenies (model Mbp0) and genotypes (model Mbg0). Both
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models showed a significant effect of the corresponding explicative factors (p-value < 0.01
in all cases). The LMM fitted to analyze the variation of G among genotypes including
diameter as a random factor (model Mbg1) retained the significance already shown by the
corresponding null model Mbg0. In addition, change in model AIC was not noticeable
(∆AICMbg1-Mbg0 = 2) and both models did not differ significantly (p-value = 1). In contrast,
the fitted LMM Mbp1 that included diameter as a random factor resulted more parsimo-
nious than the corresponding null model (∆AICMbp1-Mbp0 = −4.3) and was significantly
different from Mbp0 (p-value = 0.01). In consequence, either Mbp1 or Mbg1 were selected
as the most explicative models for this in vitro assay (Table 2). Both models supported the
lower susceptibility of C. mollissima against C. parasitica (Figures 3 and S1).
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According to this model, the tolerance to C. parasitica of progenies “CS-49”, “CS-
51”, “CS-54”, and “CS-62” is not significantly different from that of tolerant C. mollissima
making them good candidates for further studies regarding their suitability to be planted
in orchards. The use of average G values for C. mollissima genotypes as a reference in model
fitting was supported by the lack of significant differences of G between “M2” and “M5M”
in any of the datasets (p-value > 0.20 in all cases).

4. Discussion

In this assay, C. parasitica colonized the wood in the first six days after inoculation in
contrast with other methodologies where longer periods were required [29]. The method-
ology used, debarking of lignified shoots, was expected to improve colonization by the
fungus compared to inoculation on live seedlings [30] or on stems with bark [13]. In
addition, working under controlled conditions allows to not have to worry about the
potential infection and death of the plant, or part of the plant, or introducing new vcgs
potentially foreign to an area. Future research involving inoculation with fungi from differ-
ent populations—even in simultaneous infection—will be informative to characterize the
most resistant genotypes suitable for establishing new plantations. However, an aspect to
be considered is the virulence of the fungal strain used which is expected to vary among
isolates [31]. In this study, we only tested one fungal strain since our main objective was to
characterize host susceptibility against a strain of the EU2 vcg, the most common vcg type
in the Montseny area [32].

Regarding features of plant material, Pažitný et al. [12] reported a significant effect of
stem diameter on chestnut blight lesion development. This observation completely agrees
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with our fitted models (Table 2) where the inclusion of stem section diameter provided a
better explanation of recorded data.

Nearly all the C. sativa materials included in this study come from a reduced popula-
tion of chestnut trees of the Montseny Natural Park, therefore, extending this study to a
wider genetic base would be the first step to take in future evaluations. “PO11” is the only
material not originating from this population, it is a spontaneous chestnut hybrid selected
as a rootstock of C. sativa [33] for its resistance to Phytophthora spp. In this evaluation “PO11”
has been included in the group whose tolerance is comparable to the one of C. mollissima,
which was expected since this genotype carries some Asian genes [34].

It should be noted that 70% of the C. sativa genotypes and the 40% of progenies
from Montseny inoculated with C. parasitica showed a response analogous to the one of
C. mollissima in their canker development. These results are relevant because the chestnut
orchards in Montseny are not described as having been introgressed with Asian materials
as in other Spanish areas [35]. Their ancestry and traditional management in the last
100 years do not indicate the entry of foreign fruit varieties. Nor are there any genotypes
with proper names that could suggest that they are ancient varieties of the Montseny area.
Chestnut trees sampled from this area, according to Mattioni et al. [36], clustered (Nei
distance) together with trees from southern Italy and Sicily but not with those of bordering
areas. Southern Italy chestnuts have genetics from the Eastern Mediterranean [36]. Perhaps
by going deeper into the origin of the Montseny materials, it would be possible to identify
other materials to include in further C. parasitica susceptibility screenings.

5. Conclusions

Differences in susceptibility to chestnut blight among C. sativa trees have been detected
both at the individual genotype level and at the progeny level. The debarked budstick-
based inoculation method used here revealed nineteen genotypes and four progenies of
C. sativa with a susceptibility to C. parasitica not different from that of C. mollissima.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11111158/s1, Figure S1: Values of mean daily lesion growth rate (G) by Castanea
sativa genotype fitted by model Mbg1 (Assay B). Mean values and 95% confidence error are shown.
Asterisk (*) denotes significant differences in respect to Castanea mollissima (average value of “M2”
and “M5M”). Number of repetitions: 4 (“M2” and “M5M”); 4 (all genotypes of C. sativa).
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