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Abstract: Despite the need for preserving the carbon pools in fire-prone southern European land-
scapes, emission reductions from wildfire risk mitigation are still poorly understood. In this study,
we estimated expected carbon emissions and carbon credits from fuel management projects ongoing
in Catalonia (Spain). The planning areas encompass about 1000 km2 and represent diverse fire
regimes and Mediterranean forest ecosystems. We first modeled the burn probability assuming
extreme weather conditions and historical fire ignition patterns. Stand-level wildfire exposure was
then coupled with fuel consumption estimates to assess expected carbon emissions. Finally, we esti-
mated treatment cost-efficiency and carbon credits for each fuel management plan. Landscape-scale
average emissions ranged between 0.003 and 0.070 T CO2 year−1 ha−1. Fuel treatments in high
emission hotspots attained reductions beyond 0.06 T CO2 year−1 per treated ha. Thus, implementing
carbon credits could potentially finance up to 14% of the treatment implementation costs in high
emission areas. We discuss how stand conditions, fire regimes, and treatment costs determine the
treatment cost-efficiency and long-term carbon-sink capacity. Our work may serve as a preliminary
step for developing a carbon-credit market and subsidizing wildfire risk management programs in
low-revenue Mediterranean forest systems prone to extreme wildfires.

Keywords: wildfire risk; landscape management; ecosystem services; carbon credits; green deal

1. Introduction

Carbon emissions from fires in European countries, and Mediterranean areas, in
particular, represent about 4.03 Tg C per year [1,2]. However, a few extreme fires account
for the bulk of burned areas and carbon dioxide emissions to the atmosphere [3,4]. These
are extreme escaped fires that easily overwhelm firefighting capacity, and the containment
is restricted to strategic locations in backing and flanking fire spread areas [5,6]. This
is the reason why recent studies advocate for a comprehensive long-term solution to
better coexist with fire, and forest fuel management is emerging as a fundamental strategy
complementing fire suppression and ignition prevention in populated areas [7–9].

Fuel treatments mitigate wildfire intensity on treated locations and reduce wildfire
spread and overall wildfire likelihood at the landscape scale [10–12]. Commonly imple-
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mented prescriptions in Mediterranean forests are low pruning, thinning from below,
prescribed fires, mechanical mastication, and targeted grazing [13–15]. On the other hand,
the most frequent treatments at the landscape scale consist of fuel break networks dividing
the landscape into large planning areas, systematic buffer clearings within the wildland–
urban interface, and intensively managed scattered treatment units known as strategic
management points (SMPs) [16–18]. Wildfire managers design SMPs based on expert
criteria, heading-fire pathway analysis, and fire-weather synoptic conditions [19]. The
implementation of SMPs is gaining extensive adoption in many fire-prone Mediterranean
areas, such as Catalonia, where fuel treatments have become the primary risk reduction
strategy [20].

Primary fuel treatment objectives in Mediterranean areas are protecting human com-
munities, timber harvesting, restoring fire-adapted ecosystems, reducing extreme wildfire
potential, and facilitating safe and effective fire suppression [21,22]. Moreover, some studies
have shown that forest management increased carbon sequestration [23,24] and developed
management prescriptions under different wildfire hazard scenarios based on stand struc-
ture conditions [25,26]. However, protecting carbon stocks from extreme fires was often
considered a secondary objective in southern European regions, and the reduction in emis-
sions remains unknown in large-scale ongoing fuel reduction programs. Previous works
conducted in the western US implemented quantitative assessment methods that coupled
fire simulation modeling with stand-level carbon loss functions to estimate the effect of fuel
treatments in reducing carbon emissions from wildfires [27–29]. These studies found that
thinning weight plus prescribed fire treatment intensity and the frequency and severity of
future wildfires determine the benefit of increasing carbon pools in managed forests.

Multifunctional Mediterranean forests currently provide meager economic revenues
from timber harvesting. Over the last 50 years, limited management plus the prevalent fire
exclusion policy favored fast fuel buildup in open woodlands and dense forest regeneration
in clear areas [30,31]. Moreover, large-scale afforestation campaigns planted extensive areas
over marginal lands with pines to facilitate forest development on poor soils [32]. As a re-
sult, the fires rapidly evolved from fuel-limited short-events to weather-driven catastrophic
events [33]. In central Catalonia (northeastern Spain), these new forest structures fostered
stand-replacing high severity wildfires associated with increased mortality rates on the
non-serotinous sub-Mediterranean conifers forests [34,35]. Similarly, extreme fires that
burned broadleaved forests triggered significant changes in stand structures (i.e., conver-
sion to coppice forest or scrublands), hampering woodlands’ management and economic
viability of many products, such as cork oak production and extraction [36].

The European Union assumed the commitment to reduce emissions by at least 40% by
2030, and forest ecosystems were identified as core natural carbon pools with the potential
capacity to store and compensate carbon emissions considerably (COM/2019/640). As
a result, the European Union green deal articulated the action plan towards a green and
climate-neutral sustainable economy in the EU by 2050. It will mobilize €100 billion over
2021 to 2027 to assist the most affected regions. Among many other actions, promoting
a bio-economy in local markets is one of the main strategies for overcoming the fossil
fuel-dependent economy [37,38]. Likewise, encouraging the assumption of voluntary
carbon credits by large corporations to compensate for their emission may represent an
additional funding source to reverse the landscape degradation occurring in many EU rural
areas [39,40]. Wildfire managers, in turn, require a quantitative assessment to evaluate
carbon sink capabilities and request financial compensation for fuel management programs
in low-revenue, poorly managed fire-prone areas.

This study explores the opportunity for carbon-credit-oriented forest management in
diverse fire-prone Mediterranean areas across Catalonia (northeastern Spain), where large
historical wildfires caused substantial losses in the last decades [36,41]. Providing stand-
level and spatially explicit quantitative results is essential to identify high emission hotspots
and redirect management efforts at sufficient intensities. Specifically, we addressed the
following research questions: (i) What is the expected wildfire carbon emission under
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the current conditions? (ii) What is the overall reduction in emissions per treated area
for planned fuel reductions? and (iii) where could carbon credits help subsidize ongoing
risk-reduction fuel management programs? The methods presented in this study may
help the small local landowners increase their revenues for the services provided to the
community and vindicate large-scale fuel reduction programs in low timber revenue
Mediterranean landscapes and elsewhere. Our main goal is to advance the ecosystem
service carbon markets that incentivize farmers and rural communities to generate fire-
resilient landscapes adapted to extreme wildfires. We ultimately attempt to develop
and implement a sound framework for assessing emission reductions and provide the
technical blueprint required by large corporations and EU authorities to prove the emission
reductions by fuel treatment programs.

2. Materials and Methods
2.1. Study Area

We conducted this study in different planning (n = 6) areas of Catalonia (northeastern
Spain) (Figure 1). The extent of the planning areas corresponded to the existing landscape
units of Catalonia [42]. The climate is predominantly Mediterranean, with increasing
rainfall on pre-littoral mountain ranges, milder winters closer to the coastline to the east,
and a transition to sub-Mediterranean and mountain climate in the Pyrenees. Catalonia is
one of the most significant fire-prone regions in the Mediterranean Basin and encompasses
various physiographic gradients and fire regimes (Figure 1B). On average, 650 fires burn
11.5 thousand ha per year, from which 2% of large fires (>100 ha) account for more than 88%
of the burned area (1983 to 2015). A few extreme events (i.e., >1000 ha, catastrophic wildfire
episodes of 1986, 1994, 1998, 2003, and 2012) make up the bulk (>65%) of the affected
areas [43]. Most fire ignitions (>90%) are caused by humans and show apparent occurrence
patterns clustering close to anthropogenic features, such as communication corridors
and urban areas [44]. See vegetation description and wildfire history in Appendix A for
further details.
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2.2. Landscape Data

We generated the landscape file assembling topography, surface fuel, and canopy
metric grids at a 40 m resolution as required for fire spread simulation modeling using
ArcFuels [45]. The modeling domain encompassed the extent of the planning areas plus a
10 km buffer to account for the fires incoming from the neighboring regions and predict
realistic wildfire likelihood estimates. Adjacent planning areas (i.e., 2 and 3, and 5 and 6)
were merged in the same fire modeling domain. Topographic data, including elevation,
aspect, and slope grids, were derived from a 25 m resolution digital terrain model (ign.es).
We assigned surface fire behavior models [46] to the 1:5000 scale land-cover vector map of
Catalonia [47] to generate the surface fuel model grid. For that purpose, we considered
vegetation characteristics, such as species composition, tree cover, thickness, and shrub,
plus herbaceous fuel thickness and heights gathered from the 4th National Forest map and
the 2012 habitat map of Catalonia [48]. The canopy metrics consisted of canopy height,
canopy cover, canopy base height, and canopy bulk density and were obtained from the
LiDAR-derived 20 m resolution biophysical variable grids of Catalonia [49].

2.3. Forest Fuel Treatments

Treatment spatial allocation corresponded to the strategic management points (SMP)
provided by the Bombers GRAF team (Group of Support to Forest Actions) of the Fire-
fighters of the Catalan Government [22]. These typically locate on watershed divides or
ravine bottoms that intersect with primary flow paths to restrict the fire potential and create
better opportunities for an effective fire response using a tactical fire [21,50]. Likewise,
the design accounts for the existing operational constraints, including the prescribed fire
implementation and the accessibility to the site. In addition to treatment units in the
planning areas, we also considered the SMPs in neighboring areas within a 10 km buffer
(Figure 2).
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We assumed the most widely implemented treatment prescriptions, including a tree
thinning followed by a prescribed fire in conifer forests or mechanical mastication in
broadleaved forests. Specifically, we considered a heavy-weight thinning from below,
where ladder fuels (i.e., suppressed and dominated trees) were cleared to a 60% residual
basal area target [26]. The canopy metrics were reduced accordingly to a canopy cover of
60%, a canopy bulk density of 0.09 kg m−3, and a canopy base height of 3.6 m [51]. We
assigned timber litter TL1 and TL2 surface fuel types for conifer and broadleaved treated
forests [46]. The treatment cost was provided by local forest managers [52] (Table 1). We
annualized the costs assuming a treatment duration of 8 years for surface fuel reductions
and 14 years for the thinning, as described in previous works conducted in the study
area [53,54]. The stand-level treatment cost varied between 100 and 228.75 € ha−1 per year.

Table 1. Summary table with treatment cost data for fuel reductions in SMPs. The overstory is first reduced to a 60% canopy
cover implementing a thinning from below, followed by prescribed fire (in conifer forest) or mechanical mastication (in
broadleaved forests). We assumed average cost conditions for ongoing fuel reduction plans.

Type of Treatment Treatment Location Treatment Cost
(€ ha−1)

Effective Duration
(yr)

Annualized Cost
(€ ha−1 yr−1)

Prescribed fire Conifer forests 800 8 100.00
Mechanical mastication Broadleaf forests 950 8 118.75

Thinning from below High density forests
(cc > 60%) 1000 14 71.43

2.4. Wildfire Occurrence

We trained a machine learning Random Forest model [55] using fire ignition location
data (Figure 1B) retrieved from the EGIF Spanish fire database [43] to predict fire ignition
probability from a set of geospatial data grids. These layers included proxies for accessibility
(distance to roads, distance to forest tracks, and distance to trails), agricultural activities
(distance to croplands), human pressure on wildlands (distance to the wildland–urban
interface), and potential sparks from power-lines (distance to power lines) [56]. The
model was calibrated using a k-fold cross-validation (k = 4) procedure using a sample of
10,835 fires from 1998 to 2015. At each step or fold, we split the sample into a training
sample with 75% of fires to fit the model and a 25% validation sample to evaluate the
model, calculating the area under the receiver-operating (ROC) curve (AUC) [57]. The
sub-models were then combined into the final model used to predict the probability of fire
occurrence, presenting an average AUC > 0.73. We generated a 40 m resolution ignition
probability grid, where values ranged between 0 and 1 (Figure 3). This raster grid was
used as input in fire simulation modeling to locate required fire ignition patterns on the
different fire modeling domains.

2.5. Fire-Weather Scenarios

The fire-weather conditions present substantial region-wide differences across Catalo-
nia [58]. Therefore, we considered multiple fire-weather macro-areas or pyromes in the
planning areas to accurately replicate the changing gradients on historical burn patterns
(Figure 1B). The delimitation of the fire-weather macro-areas was based on climatic and
physiographical conditions and historical large fire footprints [59]. The wildfire season
was the annual period concentrating 90% of the burned area from large fires (>100 ha; see
Appendix A). We considered all the large fire ignitions within a 10 km buffer to compute
the wildfire season’s duration, and the analysis was conducted together for neighboring
planning areas [43].

We then characterized the fire-weather conditions occurring during the wildfire season
from hourly temperature records, rainfall, wind speed and direction, relative humidity,
and solar radiation from different automatic stations using the Fire Family Plus v 4.2
software [60]. For each macro-area, we identified a representative weather station with
a long data record (>15 years). Since containment efforts are very effective under mild
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weather conditions [61], we assumed 97th percentile extreme weather conditions in wind
speed for most frequent wind directions and ERC-G fuel moisture content to generate
the fire modeling weather scenarios. Specifically, we developed a set of probabilistic fire-
weather scenarios in terms of fire spread duration, wind speed, wind direction, and fuel
moisture content combinations (Table 2).
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2.6. Fire Spread Simulation Modeling

We used the minimum travel time (MTT) algorithm [62] as implemented in FCon-
stMTT to model fire spread [59]. The algorithm calculates a two-dimensional fire growth
at a resolution set by the user by minimizing fire travel time from the cell corners based
on Rothermel’s fire spread model [63]. The MTT has been widely used in previous stud-
ies assessing wildfire transmission and fuel treatment effects in complex terrains world-
wide [12,64,65]. The fire ignitions were first distributed within the modeling domain
according to the ignition probability grid (Figure 3). Then each fire was independently
modeled considering subarea-level 97th percentile extreme fire-weather conditions for the
wildfire season (Table 2).

To calibrate the surface fire spread model (see Appendix B), we replicated the actual
large fire size (>100 ha) distribution as well as average fire size in every planning area
separately, except for adjacent units (Figure 1A). Multiple day events were decomposed
into daily blow-up progressions and constant fire-weather conditions during the fire’s
duration [66]. We set the fire spread durations that better replicated the historical fire size
distribution under extreme weather conditions. The fire modeling domains were saturated
with thousands of fires that burned each pixel more than 20 times on average and a total
area equivalent to 10,000 years of iterations. Fire suppression efforts were omitted due to
their limited containment capability during extreme fire events in the study area [67]. As a
result, we obtained the pixel-level annual burn probability as [68]:

aBP =
nxy

Y
(1)
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where aBP is the annual burn probability determined at a 40 m resolution as the n number
of times a given xy pixel burned divided by the Y total number of modeled wildfire years
or iterations.

Table 2. Fire-weather scenarios for extreme weather conditions (97th percentile) during wildfire season for the different
planning areas. While the neighboring planning areas (Figure 1) were merged in a single fire modeling domain or landscape
file, we considered multiple fire weather macro-areas. We used wildfire-season automatic weather station data to generate
fire-weather scenarios. We set the fire spread duration probabilities that replicated historic fire distributions under constant
extreme fire-weather conditions. See modeled and predicted fire size distributions in Appendix B.

Planning
Area
Code

Macro-Area-Level Weather Station
(Municipality)

Fuel Moisture Content, % Fire Spread Duration,
Min (Probability, %)

1 h 10 h 100 h LH LW

1
Plain of Lleida (Tárrega) 7 8 10 20 65

75 (0.80); 180 (0.20)North–south valleys (Torredembarra) 7 9 11 40 70
Mountainous areas (Montsec d’Ares) 8 10 12 40 85

2 and 3
Plain and open valleys (Muntanyola) 7 8 11 20 65

150 (0.25); 300 (0.50);
660 (0.25)

Mountainous areas (Orís) 9 10 13 25 75
Mountain peaks (Cadí-Nord) 11 12 14 30 90

4
Mountainous area (Cabanes) 8 9 12 40 75

90 (0.70); 540 (0.30)Inner Albera (Cabanes) 7 8 11 30 65
Coastal Albera (Portbou) 6 7 9 20 60

5 and 6

Plain of Lleida (Tárrega) 7 8 10 20 65

110 (0.50); 210 (0.50)
Inner mountains (St. Salvador Guardiola) 9 11 15 40 80

Pre-coastal depression (Font-Rubí) 7 8 10 20 65
Coastal belt (Torredembarra) 8 9 12 30 75

Macro-Area-Level Weather Station
(Municipality)

Wind Speed Scenario, km h−1 (Frequency, %)

45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ 360◦

Plain of Lleida (Tárrega) - 19 (6) 20 (24) 19 (17) 19 (17) 18 (36) - -
North–south valleys (Torredembarra) 14 (12) 8 (8) 12 (43) 12 (20) 11 (8) 12 (9) - -
Mountainous areas (Montsec d’Ares) - - - 20 (44) 14 (37) 18 (19) - -

Plain and open valleys (Muntanyola) - 8 (6) 8 (20) 12 (39) 12 (27) 12 (8) - -
Mountainous areas (Orís) - 12 (12) 12 (28) 12 (34) 10 (20) 10 (6) - -

Mountain peaks (Cadí-Nord) - - 12 (8) 12 (9) 14 (20) 14 (34) 12 (29) -

Mountainous areas (Cabanes) - 8 (25) 8 (31) 8 (12) 12 (8) - 14 (11) 14 (13)
Inner Albera (Cabanes) - 8 (25) 8 (31) 8 (12) 12 (8) - 14 (11) 14 (13)

Coastal Albera (Portbou) 32 (14) - 19 (15) 32 (23) 32 (6) - 39 (7) 37 (35)

Plain of Lleida (Tárrega) - 19 (6) 20 (24) 19 (17) 19 (17) 18 (36) - -
Inner mountains (St. Salvador Guardiola) - 10 (5) 15 (32) 10 (41) 10 (13) 10 (9) - -

Pre-coastal depression (Font-Rubí) - - 14 (7) 19 (58) 19 (23) 18 (7) 19 (5) -
Coastal belt (Torredembarra) - 20 (21) 15 (20) 16 (36) 18 (23) - - -

2.7. Expected Carbon Emissions

We estimated pixel-level expected emissions from wildfires combining modeled wild-
fire likelihood estimates with conditional fire effects from surface fires as [69]:

eECO2 = aBP ×
(
cFC × EFCO2

)
(2)

where eECO2 is the expected carbon dioxide gas emission (T ha−1 yr−1), aBP is the annual
burn probability (%), cFC is the conditional fuel consumption (T ha−1), and EFCO2 is the
emission factor (T T−1, dry basis). Emissions are, therefore, expectations estimated as
the burn probability times consequences [70]. We used EF for stand-level dominant tree
species, ranging between 1415 and 1879 g kg−1 [71].
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The conditional fuel consumption (cFC) for surface fuels was first estimated by fuel
category, including litter, duff, 1 h, 10 h, 100 h, and 1000 h using available models from the
literature [72], and then summed to a 40-m resolution grid. Next, we assumed extreme
fire-weather conditions (Table 1) and stand-level data on the forest floor and above ground
dead fuel biomass dry weight per ha for the dominant forest types in the study area to
calculate the fuel consumption (see Appendix C). Finally, the reduction in carbon dioxide
gas emissions was estimated as the difference between the current conditions and the
managed scenario or treated landscape in SMPs (Figure 2). We focused on assessing the
reductions due to aBP differences and did not consider emissions from treatments due to
the lack of reliable data for ongoing works.

2.8. Cost-Efficiency Analysis

First, we estimated the pixel-level difference, as CO2 T ha−1 per year, between the
current conditions and the managed scenario. Then, the CO2 emission results in managed
scenarios were determined after implementing fuel reductions in SMPs (Figure 2), with the
treatment cost and prescriptions described in previous sections. Specifically, we modeled
the reduction in burn probability for the managed scenarios to assess the treatment effects
across the landscape. These results were summarized by the planning area and treatment
unit (i.e., SMP). We then estimated the potential revenue from carbon credits considering a
€13.18 T−1 reference market price for prevented emissions [73]. Finally, we determined the
potential contribution of the carbon credits to financing the treatment cost, as a percentage,
in each planning area. See the methodological flowchart on Appendix D.

3. Results
3.1. Expected Carbon Emissions

Expected carbon emissions from wildfires varied largely within and among the differ-
ent planning areas (Figure 4). The average results ranged between 0.003 and 0.060 CO2 T ha−1

per year at the landscape scale. Primarily, burn probability was the main causative factor
explaining high expected emissions, despite the existing differences in stand-level condi-
tional fuel consumption. We found the highest contrast between the neighboring forest
lands of the planning areas 2 and 3, where similar stand structures (e.g., timber-stage
conifer forests) located at less than 15 km of distance showed differences greater than
100 times in expected emissions. The strong north–south climatic gradient explains this
difference because southern portions show drier fire-weather conditions (Table 2) and a
higher wildfire occurrence (Figure 3). The open plains of planning area 4 and high-fuel
load unburned black pine mature forests of central areas in planning area 3 presented the
highest emission values from among all forest types. Most black pine mature stands of
planning area 4 (i.e., mature timber-stage black pine forests) showing remarkably high con-
ditional and expected emissions (>0.2 CO2 T ha−1 yr−1) were located in unburned patches
or islands of the latest extreme fire episodes (Figure 1B). Conversely, recently burned areas
in planning area 4, including low pole-stage Aleppo pine and mixed forests, presented
a lower potential emission (<0.02 CO2 T ha−1 yr−1). On the other hand, incoming fires
arrived from all around in planning areas 5 and 6 (Figure 4), where high emission areas
tend to concentrate in the central portions. These areas were primarily dense and mature
Aleppo pine stands exposed to long-distance spreading extreme wildfire events.

As expected, we found the lowest values in planning area 2 (Figure 4), where more
than 80% of the mountainous areas in the north presented very shallow emission values
(<0.001 CO2 T ha−1 yr−1). Except for some rare events occurring in conifer plantations,
the wildfires in high-elevation areas (>1500 m.a.s.l) of the Pyrenees hardly ever burn
more than 100 ha of forest lands. Winter fires associated with dry and gusty foehn winds
can also burn reduced forest patches in mountainous alpine areas, but these are isolated
low-frequency episodes with a limited potential compared to Mediterranean fires [74].
Nonetheless, southern wind-driven fires occasionally exposed south-facing lower slopes
of the neighboring east–west orientation mountain range in planning area 2. We also



Land 2021, 10, 1104 9 of 23

found this topographic pattern in planning area 1, but the transition was smoother because
the central valley and dominant southern winds occurring during the wildfire season
presented the same orientation. In planning area 4 (Figure 4), a large portion to the west
showed shallow values (<0.001 CO2 T ha−1 yr−1) mainly because of the lower wildfire
occurrence and a northern wind direction channeling the fires through the central valley.

Land 2021, 10, 1104 9 of 23 
 

neighboring forest lands of the planning areas 2 and 3, where similar stand structures 
(e.g., timber-stage conifer forests) located at less than 15 km of distance showed 
differences greater than 100 times in expected emissions. The strong north–south climatic 
gradient explains this difference because southern portions show drier fire-weather 
conditions (Table 2) and a higher wildfire occurrence (Figure 3). The open plains of 
planning area 4 and high-fuel load unburned black pine mature forests of central areas in 
planning area 3 presented the highest emission values from among all forest types. Most 
black pine mature stands of planning area 4 (i.e., mature timber-stage black pine forests) 
showing remarkably high conditional and expected emissions (>0.2 CO2 T ha−1 yr−1) were 
located in unburned patches or islands of the latest extreme fire episodes (Figure 1B). 
Conversely, recently burned areas in planning area 4, including low pole-stage Aleppo 
pine and mixed forests, presented a lower potential emission (<0.02 CO2 T ha−1 yr−1). On 
the other hand, incoming fires arrived from all around in planning areas 5 and 6 (Figure 
4), where high emission areas tend to concentrate in the central portions. These areas were 
primarily dense and mature Aleppo pine stands exposed to long-distance spreading 
extreme wildfire events. 

As expected, we found the lowest values in planning area 2 (Figure 4), where more 
than 80% of the mountainous areas in the north presented very shallow emission values 
(<0.001 CO2 T ha−1 yr−1). Except for some rare events occurring in conifer plantations, the 
wildfires in high-elevation areas (>1500 m.a.s.l) of the Pyrenees hardly ever burn more 
than 100 ha of forest lands. Winter fires associated with dry and gusty foehn winds can 
also burn reduced forest patches in mountainous alpine areas, but these are isolated low-
frequency episodes with a limited potential compared to Mediterranean fires [74]. 
Nonetheless, southern wind-driven fires occasionally exposed south-facing lower slopes 
of the neighboring east–west orientation mountain range in planning area 2. We also 
found this topographic pattern in planning area 1, but the transition was smoother 
because the central valley and dominant southern winds occurring during the wildfire 
season presented the same orientation. In planning area 4 (Figure 4), a large portion to the 
west showed shallow values (<0.001 CO2 T ha−1 yr−1) mainly because of the lower wildfire 
occurrence and a northern wind direction channeling the fires through the central valley. 

 

Figure 4. Expected carbon dioxide emissions (CO2 T ha−1 yr−1) from wildfires occurring under extreme fire-weather
conditions within the different planning areas. The numbers refer to the planning area codes (Appendix A; Figure 1).

3.2. Carbon Emission Reduction in Managed Scenarios

The landscape-scale emissions in managed scenarios were reduced by between 49
(planning area 6) and 444 CO2 T per year (planning area 3), which resulted in a reduction
between 11 (planning area 6) and 35% (planning area 2) compared to the non-managed
conditions (Table 3). Interestingly, a high percentage reduction was not associated with a
high decrease in CO2 T emission per year (e.g., see planning area 2). In planning area 2,
most wildfire activity concentrated in the southern portion, where we concentrated many of
the treatments, thus explaining the high reduction when presented as a percentage. On the
other hand, the highest reduction per planning area extent corresponded to the planning
area 4 and the highest reduction per treated area to the planning area 6. The higher overall
performance in those units is explained by the high wildfire activity and the higher chance
of SMPs encountering a fire in the future. However, we note that the treatment intensity
(i.e., % treated area), spatial patterns (i.e., treatment unit size and clustering degree), and
topographic position (e.g., water divides vs. valley bottoms) varied among and within
the different planning areas. Treatment design is a significant factor affecting emission
reductions that should be considered while interpreting the results [10,11].

Emission reduction maps showed very complex patterns and significant differences
within the planning areas (Figure 5). Not surprisingly, the treated stands were the high-
est emission reduction areas, but the performance varied widely within and among the
planning areas. As expected, the most notable emission reductions concentrated within a
5 km buffer area of influence around treated SMPs. Overall, the effect reduction decreased
with the increase in the distance to the SMPs. Nonetheless, this influence was broader in
highly fire-affected regions where the effect resulted very substantially (>0.01 CO2 T yr−1)
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far away from treated units (Figure 5). Planning area 3 is a good example where massive
catastrophic fires can potentially spread as much as 10 km (Figure 1B).

Table 3. Summary table with landscape-scale expected carbon dioxide emissions from wildfires and emission reductions
after treatments. The emission reductions represent landscape-scale results accounting for the fuel treatment effects on
treated SMPs (Figure 2) and neighboring lands (Figure 5).

Planning Areas (Code) Area (ha)

Non-Managed Scenario Managed Scenario

Expected Emission (CO2 T yr−1) Treated Area (ha)
Emission Reduction

(CO2 T yr−1) (%)

Vall de Rialb (1) 23,467 362 1316 59 16
Capçaleres del Llobregat (2) 62,303 156 3251 55 35

Replans del Berguedá (3) 52,592 2629 5330 444 16
Els Aspres (4) 18,392 1107 2740 246 22

Serres d’Ancosa (5) 22,968 1044 3951 213 20
El Montmell (6) 15,461 454 318 49 11
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The shadow effect in emission reductions obtained in the study areas was directly
associated with the lower burn probability of the managed scenario (Figure 6). Specifically,
the footprint effect expanded on the opposite side to the large fire arrival border. For
instance, the SMPs disrupting southern wind-driven wildfires exhibited a reduction in
the treatment’s northern side. Previous studies also found this reduced burn probability
shades close to treatments due to smaller fire footprints obtained in modeled managed
scenarios [69,75]. Nonetheless, very high aBP reductions in large, treated patches did not
necessarily produce a significant shade effect in the adjacent lands if the polygons represent
a fire sink area. We found this fire-sink effect in the large SMPs of central planning area 5,
where the aBP footprint reduction in neighboring regions (Figure 6) was minimal compared
to the treated areas and emission reduction (Figure 5). These were the treatment blocks
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with a low wildfire occurrence encircled by fire source communication infrastructure and
urban development areas (Figure 3).
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The treatment unit level emission reductions showed variable results within and
among the different planning areas (Figure 7A). They revealed that SMPs were not neces-
sarily allocated in the high-emission hot spots (Figure 4). The bulk of the SMPs attained
reduction values between 0.01 and 1 T CO2 per year on average, and only less than 5% of
the treated areas was above 0.08 T CO2 ha−1 per year. The top SMPs in the planning areas
1, 4, and 3 showed reductions greater than 1 T CO2 per year, but this high performance
shifted drastically when we analyzed the reduction per treated area. In planning area 4, for
instance, the reduction per treated area varied more than five times between the treatment
units with a similar total reduction. Other planning areas, such as the 1 and 2, presented a
narrower difference of two times while addressing the performance per treated areas. The
treatments implemented in planning area 2 were the worst among the different treatment
units and rarely surpassed 0.01 T CO2 ha−1 per year.

The widest variation in performance was obtained in planning area 5 (Figure 7B). Here,
the difference between the first and third quartiles was close to 0.05 T CO2 per year and
reflected how the average value alone is not enough to describe the performance results
within planning areas. These results presented in box plots could assess the potential
performance improvement for the best set of SMP treatment units after excluding those
located in rare remote areas with a reduced potential to restrict fire spread and carbon
emission (<0.01 CO2 T ha−1 yr−1). Likewise, we found that some planning areas, such
as 4 and 5 in particular, contained a significant number of observations above the third
quartile (Figure 7B) implemented in very high-emission areas (>0.05 CO2 T ha−1 yr−1)
where the project-level average reduction disguised a great allocation. These units were
the high-performance strategic management points or fuel break, or treatment barriers
implemented in the central part of the planning area 4 (Figure 3).
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Although an increasing wildfire occurrence (Figure 3) correlated with a higher overall
wildfire likelihood, high ignition probability values did not necessarily connote a high
burn probability (Figure 7C). For instance, many SMPs in planning area 4 with ignition
probability values of about 60% sowed a very variable burn probability, even up to three
times. These complex patterns were also found in other Mediterranean areas [76,77].
Wildfire burn probability was a significant factor explaining expected emissions because
conditional fuel consumption (Figure 7D) alone would have provided a misleading result.
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While planning areas 1 and 4 presented similar fuel consumption results (Figure 7D),
expected emissions were much higher in planning area 4 (Figure 7B). Most treatment units
were located close to roads (<250 m) on gentle slopes (<30%) (Figure 7E). Overall, burn
probability reductions were higher than 80%, except in planning area 6, where the size of
the treatment units was tiny, and large fires easily surpassed the SMPs (Figure 7F).

3.3. Financing Fuel Treatment Cost with Carbon Credits

Forest management provided a significant gross benefit or revenue from preventing
wildfire carbon emissions in some planning areas (Table 4). Specifically, the annual income
was between 645 and 5853 € for the carbon emission reductions estimated in this study
(Figure 5), assuming a €13.18 per CO2 T market price [73]. While the lowest attained
revenue normalized per planning area extent was 0.37 € ha−1 in planning area 2, the
highest value resulted in 4.70 € per ha in planning area 4. Despite the low total revenue
of the planning area 6 (643 € yr−1), the attainment per treated area at the landscape scale
was above the average (2.35 € ha−1). Since the treatment allocation showed highly variable
stand-level results (Figure 7), we calculated the percentage treated area in high emission hot
spots (>0.01 CO2 T ha−1 yr−1). This was an alternative performance metric to determine
the SMP area with a significant contribution in reducing emissions. In contrast with the
good overall allocation of treatments in planning areas 5 and 6 (>90%), in some planning
areas, less than half of the treated area would be considered attractive for carbon credit
investment. By contrast, a significant revenue emerged when we computed most carbon
credits to a much lower treated area (e.g., 3245 € yr−1 to just 29% of the SMP area in
planning area 4).

Table 4. Revenue from a potential carbon credit market in the different planning areas. We assumed a fuel treatment
effective duration between 8 to 14 years. The wildfire managers implementing fuel reduction programs in the study area
provided the treatment cost (Table 2). The SMP area over high emission hotspots (>0.01 CO2 T ha−1 yr−1) was computed as
a performance metric for the fuel reduction programs.

Planning Area
(Code)

Strategic Management Points Fuel Treatment Cost

Area (ha) Hotspot Area (%) Thinning (ha) Mastication (ha) Prescribed Fire (ha) Cost (€ yr−1)

1 628 64 164 26 602 74,972
2 1980 0 1099 129 1851 278,880
3 3775 74 1133 711 3064 471,821
4 691 29 24 310 382 76,698
5 3171 96 1657 50 3121 436,342
6 274 93 104 1 273 34,770

Planning Area
(Code)

Carbon-Credit Revenue

Reduction in Emissions (T CO2 yr−1) Revenue (€ yr−1)
Contribution

to Cost (%)

1 58.8 775 1.0
2 55.0 725 0.3
3 444.1 5853 1.2
4 246.2 3245 4.2
5 212.7 2804 0.6
6 48.8 643 1.8

The total treatment cost by planning areas was between 34,770 and 471,821 € per year.
The areas requiring a thinning to a greater extent presented the highest cost. These SMPs
were predominant in planning areas 2 and 5, where thinning was implemented in more
than 50% of the area, and the average cost was above 135 € ha−1 per year. On the other hand,
the most economical treatments were located in planning area 4 (110 € ha−1 yr−1) despite
requiring the more expensive mechanical mastication instead of prescribed fire in 45% of
the area. The carbon credit revenue’s potential contribution in financing the fuel treatment
cost was between 0.3 in planning area 2 and 4.2% in planning area 4. Considering only
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the SMP area allocated in carbon emission hotspots (Table 4), the contribution increased
substantially. It would potentially cover up to 14.5% of the cost in the best case (i.e.,
planning area 4). Conversely, the potential revenue from carbon credits in planning areas 2
and 5 was below 1% in any case. While we expected poor results in planning area 2, the
contribution in planning area 5 was exceedingly low for the observed high fire activity
(i.e., annually burned area). We presume that this was due to the design of exceeding large
treatment blocks in planning area 5 (Figure 2), where much narrower barriers or fuel breaks
perpendicular to dominant winds, such as those implemented in planning area 4, would
have obtained the same effect for less than half of the cost.

4. Discussion and Conclusions

Despite the European Union’s accession to the Paris Agreement [78] and commitment
to drastically cut CO2 emissions, severe wildfires continue to burn vast areas and pose a
significant threat to the Mediterranean forests [4,79,80]. As a result, forest management
works developing wildfire risk reduction plans have substantially increased in recent
years [9,81,82], but the emission reduction effects are still largely unknown. However,
sustainable forest management support for preserving carbon pools in fire-prone forest
ecosystems lacks specific financing lines. To our knowledge, this work is the first study
conducted in Mediterranean areas estimating prevented CO2 emissions in ongoing risk
reduction plans through modeling. Precisely, we assessed the emission reduction effect of
strategic management points (SMPs) and revenue from carbon credits in a wide range of fire-
prone Mediterranean landscapes. This study provides a valuable baseline for developing a
carbon credit market intended to economically compensate small forest landowners for
preserving fire resilient cultural landscapes in fire-prone southern European regions.

The fuel consumption quantification from large fires is essential to calculate poten-
tial carbon credits in Mediterranean landscapes. Large fires caused substantial losses
in the past decades in Catalonia and will likely continue to burn vast portions due to
limited management and young forest expansion in marginal agricultural lands [30,41].
Therefore, landscape planning efforts derived from stand-level conditional effects would
largely ignore expected CO2 emissions from large fires ignited elsewhere. In other words,
the treatment units or stands present near-impossible odds of getting burned by a fire
ignited within the same forest. Indeed, humans ignite most fires close to developed sites
and communication infrastructure, and wildfires then hit forest lands after traveling long
distances [36,83]. On the other hand, CO2 emission estimates at regional scales overlook
the complex patterns of the burned areas [84,85]. In contrast to most previous works in
the Mediterranean region, we implemented stochastic fire simulation to replicate historic
fire footprint distributions across the different planning areas and model the annual burn
probability at high resolution (40 m). We accounted for the potential sources of uncertainty
and variability in model inputs (i.e., ignition probabilities, extreme fire-weather condi-
tions, and fuel loads in forest types) by modeling thousands of iterations (10,000 years)
and summarizing the wildfire likelihood pixel-level results to an overall annual burn
probability.

We identified the areas where ongoing fuel reduction programs are most likely to
generate long-term carbon benefits. The results demonstrated how fuel management
programs implemented in fire-prone areas reduced expected carbon emissions on treated
stands and the neighboring forest lands. However, many SMPs located in remote regions
would hardly encounter a wildfire and presented poor performance results. Thus, we
strongly suggest prioritizing SMP treatments in high emission spots and postponing or
excluding the fuel reductions in remote areas. Focusing on high emission areas would re-
duce the fuel treatment program cost drastically. In addition, our high-resolution expected
carbon emission maps may help forest managers determine which suitable sites meet these
conditions (Figure 4). The SMPs that we tested in this study were designed based on the
expert criteria [20,22]. These SMPs were specifically designed to reduce large-fire potential,
increase firefighting contention capacity, and did not explicitly address CO2 emission reduc-
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tions [21]. Some previous studies estimated encounter rates between fire perimeters and
treated areas to evaluate the fuel treatment effectiveness [86], but we decided to implement
a high-resolution quantitative assessment based on the burn probability to measure CO2
emission reductions [69]. Likewise, the burn probability has been widely used in previous
works to prioritize and test fuel treatment effects at the landscape scale and select the most
convenient design [87–89].

We conducted this analysis as a preliminary step to estimate spatially explicit results
for surface fires. Other carbon emissions sources, including emissions during prescribed
fires, crown fires, and the use of machinery, were not considered in our analysis. Previous
studies assessing the prescribed fire combustion emissions reported a wide range of values
between 2 and 10 CO2 T ha−1 depending on the forest systems and treatment intensi-
ties [90,91]. Conducting prescribed fires in early spring would represent the year’s proper
timing for a light burn, preventing duff and heavy log consumption due to a higher fuel
moisture content [92]. Considering an eight-year fuel treatment rotation interval, these light
burns would represent about 0.375 T CO2 ha−1 per year. Concerning crown fires, these
only consume the thin branches and leaves (<6 mm) and modeling these emissions in high
resolution at large scales would result in an exceedingly complex calculation. Nonetheless,
high-resolution LiDAR and remote sensing-derived estimates would allow for computing
the crown fire biomass in the following studies [93,94]. And lastly, we understand that
chainsaws and mastication equipment also represent a CO2 emission. Still, the manually
implemented prescribed fire was the dominant treatment type (88% of the area vs. mechan-
ical mastication in 12% of the treated area). We dismissed the use of machinery to extract
thinning due to the problematic access to SMPs and the lack of commercial interest. In
all, frequent but light surface burns in high emission spots, implemented in spring under
high moisture content conditions for the soil, would deliver the most increased net carbon
sequestration at the landscape scale [51].

We can conclude from these results that few landowners would be suitable to receive
economic compensation for treating SMPs. Furthermore, the potential financial revenue
from carbon credits was only substantial in extremely high CO2 emission areas, such as
the central fuel break barrier of the planning area LU4 (Figure 2). At best, the revenue
from carbon credits could fund up to 14% of the treatment cost if we focus on SMPs with
expected emissions above 0.01 CO2 T ha−1 per year and exclude all the rest. Nonethe-
less, we need to emphasize that treatment costs will decrease by a factor of three after
the first intervention because the following maintenance treatments are much easier to
implement [52,54]. Moreover, we noted that results require careful consideration due to
the wide range of treated intensities (i.e., % treated areas) and SMP size and shapes, which
may affect the modeling outcomes. Likewise, treated SMP in large fire areas interact closely,
and individualizing the contribution to the total emission reduction is highly challenging.
Indeed, each treatment would require a separate modeling analysis to precisely determine
reduced emission at the landscape scale.

We believe that protecting carbon stocks on forest systems may become a significant
management objective in future projects as emission neutrality and the promotion of a
bio-based economy gain momentum in the European Union. Nonetheless, future efforts
should be oriented toward determining the tipping points between carbon benefits and
losses from a broader range of forest management actions, which should provide better
and more accurate information to compute realistic compensations [95]. However, optimal
solutions may compete with other existing objectives (e.g., reducing carbon emissions vs.
reducing wildfire transmission to communities), but the trade-off analysis allows assessing
treatment co-location opportunities (i.e., forest stands where treatments can meet multiple
goals) on vast landscapes [96,97]. Ultimately, treatment prioritization works would provide
a valuable set of treatment solutions that would require implementing a risk assessment
framework to evaluate cost-efficiency.
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Appendix A. Dominant Vegetations Types and Historic Fire Activity

Irrigated agricultural lands, mosaics of low shrublands, and herbaceous xerophytic
vegetation cover the central depression below 450 m. The higher altitude and coarse reliefs
to the north confine cultivated plots to valley bottoms, with forested areas dominated by
Mediterranean oaks and low shrublands on slopes (Lavandula angustifolia Mill., Rosmarinus
officinalis L. and Quercus coccifera L.). These shrublands and forests are gradually replaced
by tall-shrubland species (Buxus sempervirens L. and Juniperus communis L.), mid-mountain
oak (Quercus pubescens Willd.), and conifer species (Pinus nigra Arn. and Pinus sylvestris L.)
first on north-facing slopes, and then on higher elevations (Pinus uncinata Ram.). Mosaics
of rocky outcrops, low shrublands (Genista balansae Boiss.), and pastures cover the high
mountain tops above 2400 m. The Mediterranean maquis (Pistacia lentiscus L. and Arbutus
unedo L.) appear in combinations with densely regenerated young Aleppo on the pre-littoral
mountain ranges pine cohorts (Pinus halepensis Mill.). Silicicolous shrublands (Cistus ssp.
and Erica ssp.) are found in coastal lowlands, sometimes with stone pine (Pinus pinea L.).
The cork oak (Quercus suber L.) forests are limited to the northeastern lowlands.

Table A1. Summary table with main features of the planning areas in the study and observed wildfire activity from 1983 to
2015. See planning area locations in Figure 1. We considered 100 ha as the large fire (LF) threshold. The wildfire activity
data was summarized collectively for adjacent planning areas. The wildfire season was determined from the cumulative
burned area (Figure A1).

Planning
Areas (Code)

Area
(ha)

Dominant Vegetation
Type and Tree Species

(abbreviation)

Burned
Area

(% yr−1)

Fire
Occurrence

(ip km−2 yr−1)

LF
Burned

Area (%)

LF
Number

(%)

Largest
Wildfire

Vall de Rialb
(1) 23,467

Evergreen and
semi-evergreen oak (Qsp)

stands under post-fire
regeneration and mature
stands of adult black pine

(Pn)

0.21 0.009 87 3 4986 ha on 17
July 2009
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Table A1. Cont.

Planning
Areas (Code)

Area
(ha)

Dominant Vegetation
Type and Tree Species

(abbreviation)

Burned
Area

(% yr−1)

Fire
Occurrence

(ip km−2 yr−1)

LF
Burned

Area (%)

LF
Number

(%)

Largest
Wildfire

Capçaleres del
Llobregat

(2)
62,293

Mature stands of Scots
pine (Ps) and black pine

(Pn)
0.47 0.013 96 3

25,368 ha on
4 July 1994Replans del

Berguedá
(3)

52,591

Post-fire regeneration
Aleppo pine (Ph) young
stands under and mature
stands of Scots pine (Ps)

Els Aspres
(4) 18,392

Post-fire regeneration
young stands and adult
stands of cork oak (Qs)

woodlands managed for
cork production

1.49 0.030 95 3 19,612 ha on
19 July 1982

Serres
d’Ancosa

(5)
22,957 Mature stands of Aleppo

pine (Ph)

0.49 0.034 86 2
3852 ha on 6

July 1986
El Montmell

(6) 15,461

Stands of Aleppo pine
(Ph), evergreen and

semi-evergreen oak (Qsp)
forests, and post-fire

regeneration mixed forests
(Mx)
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Figure A1. Daily cumulative burned area for the different fire modeling domains. The wildfire season went from 25 June to
23 August in planning area 1, 4 July to 30 July in planning area 2 and planning area 3, 18 June to 13 August in planning
area 4, and 10 April to 12 September in planning area 5 and planning area 6.
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Figure A2. Fire spread model calibration in the different fire modeling domains. Histograms show the fire size distribution
for actual (1883 to 2015) and modeled large fires (>100 ha). In planning area 4 (A), 29 historical events had a 1244 ha average
fire size, and modeled fires had an average fire size of 1216 ha. In planning areas 2 and 3 (B), 25 historical events had a
1453 ha average fire size, and the modeled fires 1428 ha. In planning areas 5 and 6 (C), 48 historical events had a 780-ha
average fire size, and the modeled fires had an average fire size of 779 ha. In planning area 1 (D), 29 historical events had a
695-ha average fire size, and the modeled fires had an average fire size of 699 ha.

Appendix C. Dead Fuel Loads in Dominant Forest Types

Required dry biomass data for assessing the FC was obtained from field sampling
campaigns conducted on the dominant forest typologies (Table 1; Figure A2) and comple-
mented with fuel loading data from standard fuel models in herbaceous type models and
live woody components [46]. We used different methods to estimate dead fuel loadings
for the different fuel fractions. The field sampling combined litter and duff extractions on
30 cm radius circular plots (n = 16 plots per forest structure type) and 1, 10, and 100 h fuel
extractions on 2 m square plots (n = 3 per forest structure type). All these fuel samples
were then oven-dried and added to estimate the dry weight biomass per ha. To calculate
the amount of 1000 h dead biomass, we conducted a set of 30 m sampling strips (n = 3 per
forest structure type) where we measured the diameter of the fallen logs on the center and
the length within a 1 m width. Then, we used species-specific allometric equations [98] to
estimate the total amount of biomass from the volume of the logs, i.e., 1000 h fuel category.
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Figure A3. Dry weight (T ha−1) of dead fuel categories, including litter, duff, 1 h, 10 h, 100 h, and 1000 h, fuel load
components on the dominant forest types within the LUs. See dominant tree species abbreviations in Table 1. Regular stand
ages included low pole-stage (LP), high pole-stage (HP), and timber stage (T).

Appendix D. Methodological Flowchart

The cost-efficiency process was conducted in four main steps (Figure A4). We first
assessed expected carbon emissions as the annual burn probability times stand-level condi-
tional carbon emissions for current conditions. Then, we implemented the landscape fuel
reduction treatments in SMPs. Next, we predicted the annual burn probability reduction
for the treated LCP to assess the expected carbon emission for the managed scenario.
Finally, we calculated the carbon emission reduction for every Euro invested in treat-
ments. The carbon credits of reduced carbon emissions were considered as revenue in
managed scenarios.
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