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Abstract
The distribution offire on Earth has beenmonitored from space for several decades, yet the geography
of globalfire regimes has proven difficult to reproduce from interactions of climate, vegetation,
terrain, land use and other human activities by empirical and process-based firemodels. Here, we
propose a simple, yet robust,model for the global distribution offire potential based on fundamental
biophysical constraints controlling fire activity in all biomes. In our ‘top-down’ approachwe ignored
the dynamics of individual fires and focus on capturing hydroclimatic constraints on the production
and (seasonal) desiccation of fuels to predict the potentialmean annual fractional burned area at 0.25°
spatial resolution, here estimated by the 0.99 quantile of the observedmean annual fractional burned
area (F0.99) over the 1995-2016 period of theGlobal Fire EmissionsDatabase (GFED4).We show that
80%of the global variation in F0.99 can be explained from a combination ofmean annual precipitation
and potential evapotranspiration. The proposed hydroclimaticmodel reproduced observed 0.99
quantilefire activity levels equally well across all biomes and provided thefirst objective underpinning
for the dichotomy of globalfire regimes in two domains characterised by either fuel production
limitations on fire or fuel dryness limitations on fire. A sharp transition between the two climate-fire
domainswas found to occur at amean annual aridity index of 1.9 (1.94±0.02). Ourmodel provides a
simple but comprehensive basis for predicting fire potential under current and future climates, as well
as an overarching framework for estimating effects of human activity via ignition regimes and
manipulation of vegetation.

1. Introduction

Satellite-based Earth observation is providing an increasingly accurate picture of globalfire patterns [1–4]. The
highest fire activity is observed in seasonally dry (sub-)tropical environments of SouthAmerica, Africa and
Australia, butfires occurwith varying frequency, intensity and seasonality in almost all biomes on Earth [5]. The
particular combinations of these fire characteristics, orfire regimes [6], are known to emerge from the combined
influences of climate, vegetation, terrain and land use, but their global distribution has so far proven difficult to
reproduce bymathematicalmodels [7–9].Most current land surfacemodels (LSMs) andDynamicGlobal
VegetationModels (DGVMs) have some capacity to simulatefire activity frombasic environmental variables but
predictions [8, 10] usually only agree with observations in some biomes (e.g. savannas of the Sub-Saharan
Africa), while disagreeing in others (e.g. boreal forests ofNorth-America). Humans add further complexity to
globalfire patterns by, amongst others, changing vegetation community composition, structure and
flammability, active use offire to clear land or reducefire hazard, and fire suppression [11–14]. The limited
ability of currentmodels in predicting globalfire patterns suggests that their firemodules fail to capture some
aspects of the biophysics that control fire activity across different environments. Incomplete understanding of
biophysical drivers and constraints that underlie current globalfire patterns creates uncertainty inmodel
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predictions of howfire regimes, fire-prone ecosystems and related biogeochemical cyclesmay respond to rising
atmospheric [CO2] and climate change [15].

Here, we go back to the fundamental biophysics offire to formulate a simple, yet robust,model for the
prediction of potentialmean annual levels offire activity across all global biomes. For this studywe define fire
activity in terms of the climatologicalmean annual fractional burned area, F, of the landscape or land area unit,
ranging from0 in long unburnt landscapes to 1 in landscapes that burn completely on an annual basis [2]. By
predicting Fwe ignore the dynamics of individual fires, but this is appropriate in our view given the fact that
mostfires are orders ofmagnitude smaller e.g., [5, 16] than the typical grid size (e.g. 0.5°× 0.5°) of LSMs and
DGVMs.

Building onBradstock’s [17] ‘four-switch’ concept we assume that four fundamental conditions need to be
met for a landscape fire to occur: (i) theremust be enough plant biomass (i.e. fuel) to carry afire, (ii) the extant
fuelmust be dry enough to be ignitable, (iii)weather conditions need to be favourable (i.e. hot, dry andwindy)
for afire to spread, and (iv) theremust be an ignition. Bradstock [17] conceptualized these conditions as four
‘switches’ in a series circuit that need to be ‘on’ for afire to occur.While anyfirewill require alignment of all four
switches at some point in time, in the context ofmodelling globalfire patternswe emphasize that the four
switches operate at disparate time scales, with an associated hierarchy of conditional constraints onfire: (1)
production of plant biomass and build-up of fuel loads occurs overmonths to years, (2) fuels dry out over weeks
tomonths, and (3)fireweather varies over time scales of hours to days, while (4) ignitions are instantaneous
events. Therefore, we hypothesize that themean annual fractional burned area (F) can be predicted from long-
term fuel production and fuel drying rates (i.e. switches 1–2), while information onfire weather and ignitions
(i.e. switches 3–4) is only requiredwhenmodelling the specific attributes of individualfires (e.g. size and burn
pattern). The hierarchical organization of the four switches further implies that themean annual fractional
burned area predicted from long-term fuel production and fuel drying rates alone represents an upper limit of
mean annual fire activity that is only reachedwhen fire weather and ignition limitations areminimal.

To test the hypothesis that the upper quantiles of F can be predicted from long-term fuel production and
drying rates we analysed global burned area data togetherwith indices of fuel productivity and fuel dryness, both
calculated from the climatic water balance [18]. Building on themethods developed in a previous study of
Australianfire regimes [19], we propose a new globalmodel that predicts the long termupper limit (i.e. the 0.99
quantile, [20]) of themean annual fractional burned area, F ,0.99 from twobasic hydroclimatic variables:mean
annual precipitation, P, and potential evapotranspiration, E .0 Themodel provides a framework to quantify the
relative importance of either fuel productivity or fuel dryness constraints on F ,0.99 whichwe hypothesized to vary
with the global distribution of land cover types and corresponding fuel types. Consistent with the varying
constraints hypothesis [21], in dryland environments with grassy fuels we expected F0.99 to be primarily limited
by fuel productivity constraints (i.e. increase withP), while inmoremesic environments dominated bywoody
vegetation and litter fuels F0.99 was expected to be limited primarily by fuel dryness constraints (i.e. increase with
E0). Other studies [22, 23], focusing onfire regimes in thewesternUSA, have related climatic water balance
terms to seasonal area burned and interpreted the strength and sign of correlations to infer predominance of fuel
production or fuel dryness constraints onfire at Bailey [24] ecosection level. Abatzoglou et al [25] showed that
interannual variation in global burned areawas positively correlatedwith climatic indices of fuel aridity in
forested ecoregions andwith cumulative precipitation prior to the fire season in non-forested ecoregions. To
our knowledge the present study is thefirst to develop a universal hydroclimaticmodel that explains both global
variation in burned area aswell as the dichotomy of globalfire regimes in two domains of either fuel production
or fuel dryness limitations onfire. Finally, we exploredwhether the global distribution of contemporary fire
regime classes or ‘pyromes’ as classified byArchibald et al [5] on the basis offivefire regimemetrics (i.e. fire
return interval,maximum fire intensity, length offire season,maximumfire size,mean annual area burned)was
associatedwith the relative importance of fuel productivity or fuel dryness constraints on F .0.99

2.Materials andmethods

2.1.Modelling approach
In this study our aimwas to predict the global distribution of potentialmean annual fractional burned area
(F0.99) as a function of basic biophysical constraints on the production and dryness of fuelmaterial. Following
Boer et al [19], we assumed that both the production and drying of fuelmaterial are essentially functions of the
local water and energy budgets available for the production and desiccation of plant biomass. The long-term
climatic water balance, calculated frommean annual P and E ,0 captures these interactions of biologically
available water and energy [18].When calculated over long time scales (?years) and broad spatial scales
(?km2), changes in the soil water store and lateral water inputs can be assumed to be negligible so that the
climatic water balance is reduced to: - - =P Q E 0,whereQ is runoff/drainage losses and E is actual

2

Environ. Res. Commun. 3 (2021) 035001 MMBoer et al



evapotranspiration.Here, we assume that seasonal lags between climate and fuel conditions can be ignored
when relatingmean annual burned area tomean annual water balance.E is a reliable predictor of continental
patterns of annual primary productivity at annual timescales [26, 27] and therefore a reasonable proxy for fuel
production rates [28, 29]. Similarly, the potential for drying of fuelmaterial can be assumed to be proportional to
the atmosphericmoisture demand (µE0) that cannot bemet by available water (µE), which is the climatic water
deficit as defined by Stephenson [18], = -D E E.0 For long timescales and large land areas, E can be predicted
fromP and E0 using the semi-empirical Budyko curve [30–32], which provides a globalmodel for the
partitioning ofmean annual precipitation in runoff and evapotranspiration as a function of climatic aridity:
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where P, E0 andE aremean annual precipitation, potential evapotranspiration and actual evapotranspiration,
respectively, and (E

P
0 ) is the aridity index. The reader is referred toWang et al [33] for a review on applications of

the Budyko framework in hydrology andwater balancemodelling.
Recently, Boer et al [19] demonstrated that continental patterns of F0.99 in Australia can be accurately

predicted frommean annual E andD, which can be approximated fromP and E .0 Sincemost globalfire regime
classes are represented inAustralia [5, 34], we hypothesized that the global distribution of F0.99 can also be
modelled as a function ofmean annual E andD. Herewe present a new global F0.99 model that consists of two
flexible sigmoidal functions, ( )F E0.99 and ( )F D ,0.99 describing the increase in F0.99 withmean annual actual
evapotranspiration (E) and climatic water deficit (D), respectively:
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where Fmax is the globalmaximumof F ,0.99 here set at 1. The shape of ( )F E0.99 and ( )F D0.99 is set by two
parameters [35]: E1 (or D1) is the value at which F0.99 increasesmost strongly withE (orD), and E2 (or D2) the
value at which F0.99 becomes irresponsive to further increase ofE (orD). Since the two predictor variables, E and
D, are not independent, thefitted E D F, , 0.99 response surfacewasmapped to (orthogonal) axes ofP and E0

before interpreting the shape of the response surface in terms of global variation in biophysical constraints on
potentialfire activity.

2.2.Data
2.2.1. Burned area
Global annual burned area data at 0.25°× 0.25° spatial resolution for the period July 1995–June 2016were
obtained from theGFED4 database, which has beenwidely used in globalfiremodelling studies. For full details
on theGFED4database, including caveats and limitation, the reader is referred toGiglio et al [2]. Themean
annual fractional burned area, F, was calculated by summing the burned areas within each grid cell for the entire
observation period and dividing by the area of the grid cell and the duration of the observation period.

2.2.2. Climatic water balance
Griddedmean annual precipitation for 1950–2000,P, was obtained fromWorldClim [36], while griddedmean
annual potential evapotranspiration for 1960–1990,E0, based on theHargreavesmethod [37, 38], was obtained
from theGlobal Aridity and Potential EvapotranspirationData base at CGIAR-CSI (http://www.cgiar-csi.org/
data/global-aridity-and-pet-database). Both climate layers have a spatial resolution of 30 arcseconds andwere
resampled to the 0.25°× 0.25° grid of theGFED4 data base using bilinear interpolation.Mean annual actual
evapotranspiration, E, was predicted from P andE0 using the Budyko curve (equation (1)).
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2.2.3. Landcover and fuel types
This study focused on areas of (semi-)natural vegetation. The corresponding vegetationmaskwas constructed
from the LandCover Type product (MCD12Q1_V51) of theModerate Resolution Imaging Spectroradiometer
(MODIS), which corresponds to the end of the burned area and climate observation period used for ourmodel.
Wefirst resampled theMCD12Q1_V51 data layer to the 0.25°× 0.25° grid of theGFED4 data base, using
nearest neighbour interpolation, and then reclassified grid cells of excluded land cover types (i.e. water,
cropland, urban and built-up, cropland/natural vegetationmosaics, snow and ice, barren or sparsely vegetated)
tomissing values.

2.3.Data analyses
2.3.1.Model fitting and validation
Data analyses focused on themodelling of the global distribution of F0.99 as a function ofmean annual E andD
(equations (2)–(4)) and on the interpretation of themodel in terms of its consistencywith current understanding
of globalfire patterns. Our complete data set consisted of estimates ofmean annual F,P,E0, andE for 193,476
grid cells covering the selected land cover types of the global land area, except Antarctica, at 0.25°× 0.25° spatial
resolution. A randomly selected sample of 50%of the grid cells was used formodel fitting, while the other 50%
of the datawas set aside formodel validation.We usedR [39] for all data analyses, in particular the ‘raster’ [40]
and ‘quantreg’ packages [41].

Non-linear quantile regressionwas used tofit equation (4) to the 0.99 quantile of F as a function ofmean
annual E andD. Tominimize bias in themodel towards themost common global climates (e.g. desert or boreal
climates), we used a simple bootstrap procedure of two steps: (i) the global E D, spacewas divided into 100mm
by 100mmbins and all climate binswith aminimumof 100 grid cells identified (n= 145), (ii) a random sample
(with replacement) of 100 grid cells was drawn from these bins, and (iii) equation (4)wasfitted to the sample
data. This procedure was run 1000 times to generate 1000 response surfaces fromwhich amean F0.99 response
surfacewas calculated [42].

Model predictions were validated against the 50%of the data that was not used formodel fitting. To do so the
validation datawas binned into 100mm× 100mmwide E D, bins and the corresponding values of F0.99

identified for all bins with aminimumof 50 observations (n= 191). Predicted values of F0.99 were extracted
from themodelledmean response surface for the same set of 191 E D, data pairs. Observed values of F0.99

correspond to the 0.99 quantile value of F in each of the 191 100mm× 100mm E D, bins. The relationship
between observed and predicted F0.99 was evaluated by linear regression analysis. Deviations between observed
and predicted F0.99 were quantified using themean difference (MD) and rootmean squared difference (RMSD):
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=

MD y y n 5
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i i
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n
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where ŷ ,i yi are predicted and observed values of F0.99 and n= 191. Tomeasure agreement between the spatial
patterns of observed and predicted F ,0.99 weused the normalisedmean error (NME) and normalisedmean
squared error (NMSE), as proposed byKelley et al [43]:
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where ŷi is the predicted value of F0.99 at grid cell i, yi the corresponding observed value, and ȳ themean of all
observed values. By normalising by the spatial variability of the observations, NMEandNMSEprovide a
measure of the spatial error of themodel, withNMEorNMSE close to 0 indicating perfect agreement between
observed and predicted patterns, and bothmetrics approaching unity when agreement is similar to that of a
model that predicts a spatially uniform value equal to themean of all observations [43].

2.3.2. Identification of climate-fire domains
Following Boer et al [19] two climate-fire domains were distinguished on the P E F, ,0 0.99 response surface
depending onwhether the direction of the F0.99 gradient wasmore parallel to the localE gradient orD gradient,
indicating predominance of fuel productivity or fuel dryness limitation on fractional burned area, respectively.
The boundary between the two climate-fire domainswas identified analytically using a gradient analysis of the
F0.99 response surface relative to gradients ofE andD in P E, 0 space (SupplementaryMaterial, S3).

As in Boer et al [19]we refer to these two domains as productivity-limited (PL)fire and dryness-limited (DL)
fire domains and analysedwhether the affinity to either domainwas related to the vegetation type being
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dominated by grasses/herbaceous orwoody plants. To this end, areas of homogeneous land cover typewere
identified on theGlobeLand30map [44]. TheGlobeLand30 product [44] is based on 30m resolution Landsat
imagery and classifies land cover types according to the dominant plant life form (e.g. forest, shrubland and
grassland), which can bemore readily related to distinct fuel types than biome classifications that often include
classes ofmixed life forms (e.g. woody savanna inMCD12Q1_V51). A large random sample (n= 9,053) of ca.
30 km× 30 km areas of homogeneous land cover typewas drawn by sampling 16 blocks of 1000× 1000, 30m
grid cells from each of the 853GlobeLand30 tiles and keeping all blocks with at least 75% in a single land cover
class. The geographical coordinates of the 9,053 homogeneous sample blocks were first used to extract
corresponding values ofP andE0 from the climate grids, whichwere then used to extract the corresponding
domain class from the P E F, ,0 0.99 response surface.

The distribution of thefive globalfire regime classes (‘pyromes’) distinguished byArchibald et al [5] over the
productivity-limited (PL) and dryness-limited (DL)fire domainswas analysed by: (i)mapping all grid cells of the
global pyromemap (i.e.figure 2 in 5) to the P E F, ,0 0.99 response surface via their correspondingmean annual P
andE0, (ii) dividing the global P E, 0 space in 100mm× 100mmbins and identifying the pyrome class with the
highest relative frequency in all P E, 0 binswith aminimumof 50 data points (n= 185), (iii) a qualitative
evaluation of the consistency of the predicted F0.99 and relative importance of fuel production and fuel dryness
constraints onfirewith the defining characteristics of the five pyrome classes [5].

3. Results

3.1. Burned area
The 0.99 quantile of themean annual fractional burned area, F ,0.99 was found to be a highly predictable function
of the climatic water balance terms E andD, and therefore ofmean annual precipitation (P) and potential
evapotranspiration (E0) (figures 1(a)–(c)). Themeans and confidence intervals of thefittedmodel coefficients
are listed in table 1.

Linear regression analysis of observed versus predicted F0.99 for validation sites showed that the
hydroclimaticmodel (equation (4),figure 1(c)) explained 80%of the global variation in F0.99 ( =R 0.802 ), with a

Figure 1. (a)Mean annual actual evapotranspiration (E, mm.y−1), (b) climatic water deficit (D, mm.y−1), and (c) the 0.99 quantile of
mean annual fractional burned area (F0.99) as functions ofmean annual precipitation (P) and potential evapotranspiration (E0). (d)
Distribution of the domains of PL- andDL-type fire in P E, 0 space, with contours of the F0.99 model in grey. Coloured dots in panel
(c) correspond to independent observations of F0.99 used for validation.

5

Environ. Res. Commun. 3 (2021) 035001 MMBoer et al



MeanDifference (MD) between observed and predicted values of 0.05, RootMean SquaredDeviations (RMSD)
of 0.14,NormalisedMean Error (NME) of 0.45 andNormalisedMean Square Error (NMSE) of 0.27. Further
details on the validation of the F0.99 model are provided in SupplementaryMaterial, S1 (available online at
stacks.iop.org/ERC/3/035001/mmedia).

According to theGFED4 data base [2], global burned areas amounted to 2.3%of the terrestrial land area per
year over the 1995–2016 observation period. The observedmean annual fractional burned area, F, was highest in
the tropical savanna regions of Africa, Australia and (to a lesser extent) SouthAmerica, where F values in the
0.3–0.4 rangewere common and as high as 0.7–0.8 in localized areas. In other fire-prone environments, Fwas
much lower, with values of up to∼0.10 for shrublands and in the 0.01–0.03 range formost forests.

The predicted global pattern of F0.99 was very similar to the observed pattern of F in the tropical savannas of
Sub-SaharanAfrica andAustralia, where tropical wet-dry climates combine high levels of fuel production
during thewet seasonwith intense drought during the dry season, producing F values as high as 0.8–1.0
(figures 2(a)–(b)). Inwoody ecosystems outside of the tropical savannas and semiarid grasslands F0.99 seldom
exceeded 0.5, which is consistent with the fact thatmost predominantly woody vegetation communities cannot
survive such high levels offire activity over long periods [45]. Zonalmedians of predicted F0.99 were 0.17 for
Mediterranean forests, woodlands and scrub, 0.05–0.12 for temperate forests, and 0.01 for boreal forest
environments (SupplementaryMaterial, S2).

3.2. Climate-fire domains
Thefitted P E F, ,0 0.99 response surface consists of two distinct domains (figure 1(d)) characterized by different
climate constraints onfire [19]. Thefirst domain (green zone infigure 1(d)) is characterized by F0.99 increasing
withmean annual actual evapotranspiration (E) but notwith variation in climatic water deficit (D), consistent
with potential fire activity levels being primarily limited by fuel production (hereafter: PL-type fire). In the
second domain (orange zone infigure 1(d)), F0.99 increases strongly withD but varies little with increasing E,
consistent with potential fire activity levels being primarily limited by the capacity of the atmosphere to dry-out
fuelmaterial to ignitable levels (DL-type fire).

A visual interpretation of thefitted P E F, ,0 0.99 response surface suggests that the domain shift fromPL-type
fire toDL-typefire occurs at some threshold aridity index (i.e. the ratio ofmean annual potential
evapotranspiration andprecipitation: E

P
0 ). The equation for the boundary between the twodomains canbederived

analytically fromequations (1)–(4) and is approximately linear for the region coveredby theobservations:
( ) (=  <E P p1.94 0.02 0.0010 and =R 0.9962 ) (SupplementaryMaterial S3). Using griddedmean annual

climate data, thedomains of PL- andDL-typefireweremapped to geographical space (figure 2(c)). The global
pattern ofPL- andDL-typefire is similar to the global distribution of climate aridity andbiome types, as expected
given that the boundary betweenPL- andDL-typefire corresponds to an aridity index of∼1.9.Dryland
environments atmid latitudes on all continentswere classified in the domainof PL-typefire, whilewet and cold
environments at all latitudeswere classified in thedomainofDL-typefire. The domain classification indicates
whether theprimary limiting factor onmean annualfire activity levelswas fuel productionor fuel dryness,which
can be expected to correlate stronglywith the dominant vegetation lifeformand fuel type (litter versus grass). Using
theGLC30global lifeformmapping [44]we found that areas of forest,wetland and tundrawere predominantly
classified in thedomainofDL-typefire (i.e. they are typically toowet to burn formuchof the time), whereas
grasslands, shrublands andbarren landswere predominantly classified in thedomainofPL-typefire (i.e. fuels are
typically sparse anddiscontinuous formuchof the time) (figure 3). The shrubland class is an interesting case: these
ecosystemsoccurmost frequently in thedomainof PL-typefire even though they are dominated bywoody
vegetation andwoodyplant litter forms an important fuel component.However, classification as PL-typefire
makes sense because (semiarid and arid) shrublands canoftenonly support largefireswhenherbaceous vegetation
fills in the gaps and connects the fuel array after above-average rainfall e.g., [46, 47].

As expected, the five pyromes distinguished byArchibald et al [5]were found to occupy distinct domains in
P E, 0 climate space (figure 4): (i) the ‘RIL’ pyrome, characterized by rare, intense, largefires was restricted to low
P environments in the climate domain of PL-type fire (green grid cells,figure 4)with amedian predicted F0.99 of

Table 1.Mean and 95%confidence intervals ofmodel
coefficients (equation (4)) obtained from1000model fits.

Coefficient Dimension Mean 95%CIs

E1 mm.y−1 577 554, 597

E2 mm.y−1 976 952, 1126

D1 mm.y−1 607 591, 626

D2 mm.y−1 1034 986, 1088
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0.05, consistentwith its geographical distribution in themore arid zones of boreal forests and temperate coniferous
forests, plus areas ofMediterranean vegetation and xeric vegetation; (ii) the ‘FIL’pyrome, characterized by
frequent, intense, largefires (yellowgrid cells,figure 4), was found in the climate domainof PL-typefire across a
broad range ofmean annualP combinedwith high E0 andwith amedianpredicted F0.99 of 0.55, which is typical
for the tropical savannas inAustralia andAfricawhere this pyromeprevails; (iii) the ‘FCS’pyrome, characterized by
frequent, cool (low-intensity), smallfires (orange grid cells,figure 4), was found across both climate domains in the
region that combines highP, high E ,0 and very high predicted F0.99 (median= 0.63), correspondingmainly to
tropical grasslands and shrublands aswell as tropical dry broadleaf forests; iv) the ‘RCS’pyrome, characterized by
rare, cool, smallfires (pink grid cells,figure 4)was foundmostly in thedomainofDL-typefire in the regionof
intermediateP and E0 with themedian of predicted F0.99 just below0.09.

The geographical distribution of the RCS pyrome spans all continents and a range of biomes, including large
fractions (0.4–0.5) of boreal forests, temperate coniferous and broadleaf forests, as well as smaller fractions
(0.2–0.4) ofMediterranean vegetation andMontane grasslands; (v) the ‘ICS’ pyrome, themost ‘human-driven’

Figure 2. (a)Observed (1995–2016)mean annual fractional burned area (F). (b)Predicted 0.99 quantile ofmean annual fractional
burned area (F0.99). (c)Geographical distribution of domains of PL- andDL-type fire in green and orange tones, respectively. Inwhite
land areas the observedmean annual fractional burned areawas negligible (F< 0.000001).
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pyrome according toArchibald et al [5], is characterized by intermediate frequency of cool, smallfires (blue grid
cells,figure 4) andwas found in both climate domains, PL- andDL-type, across wide ranges of P and E ,0 which
translates to awide range of predicted F0.99 (median= 0.25). The geographical distribution of the ICS pyrome is
alsowidespread, including large fractions (0.4–0.6) of all tropical forest biomes, and smaller but substantial
fractions (0.2–0.4) of temperate forests, (tropical) grasslands and shrublands, which is consistent with the spread
across climate domains of both fuel productivity limitations (PL-type) and fuel dryness limitations (DL-type).

4.Discussion

This study has shown that climate sets strong and highly predictable constraints on the global distribution offire
on Earth. In particular, climate constrains the amounts and timing of plant available water and energy and
thereby determines the probability that the twomost basic conditions forfire aremet, namely the production
and desiccation of plant biomass and derived fuels.We showed that the strength of those two fundamental
climate constraints onfire, and global variation therein, are capturedwell by themean annual climatic water
balance, which provides a simple yet biophysically sound basis for the prediction of potential fractional burned
area from just two readily available climate variables:mean annual precipitation and potential
evapotranspiration. The proposed hydroclimaticmodel was validated against independent burned area data and
found to explain 80%of the global variation in potential fractional burned area (F0.99)with a slight tendency to
overpredict F ,0.99 but anNMEof 0.45 indicating good agreement between predicted and observed spatial
patterns of F .0.99 Adirect comparison ofmodel performancewith existing globalfiremodels is difficult since

Figure 3.Distributions of probabilities of classification in the domain ofDL-type fire for a large sample (n= 9053) of 30 km× 30 km
areas of homogenous landcover drawn from theGLC30 global lifeformdatabase [44]. Bars are coloured greenwhere P(DL-type)< 0.5,
to indicate prevailing affinity to the domain of PL-typefire, and coloured orange where P(DL-type)> 0.5 to indicate prevailing affinity
to the domain of DL-typefire.
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most existingmodels predict F rather than F0.99 and systematic evaluation of their performance is ongoing as
part of thefiremodelling intercomparison project (FIREMIP) [7–10, 48]. Our hydroclimaticmodel is
conceptually similar to a globalmodel proposed byKelley et al [49] that predicts burned area as a function of
four limitations (i.e. fuel continuity, fuelmoisture, potential ignitions and a suppression index). Kelley et al [49]
report anNME score of 0.60–0.63 for theirmodel predictions ofmean annual burned area against theGFED4s
data set [2, 50], indicating a lack of agreement between the spatial pattern of predicted and observed burned area.

Overprediction of F0.99 by ourmodel was somewhatmore pronounced in environments of theDL-typefire
than in environments of PL-typefire (see SupplementaryMaterial, S1), butmodel residuals had similar
distributions for a wide range ofMODIS landcover types, supporting the notion that themodel captures the
main climatic constraints on globalfire activity levels. Ourmodelfitting approach, which sought to avoid
dominance of themost common fire-prone environments on Earth such as tropical savannas, will have
contributed to the relatively good performance of themodel across a broad range of hydroclimatic conditions.
Existingfiremodels tend to struggle predicting thefire regimes of temperate and boreal forest regions, that burn
muchmore infrequently than tropical savannas [5], but we did not observe thatmodel fit suffered in any
particular biome becausewe employed amechanistic, hydroclimatic approach that captured the fundamental
biophysics underlying globalfire regimes.

The bias in performance of existing globalfiremodels is likely due to a limited capacity to simulate fuel
drying dynamics in forest andwoodland environments [8, 10].Whereas the seasonally wet-dry climate of

Figure 4. (a)Distribution of global pyrome classes [5] in P E, 0 space, with contours of the fitted global F0.99 model in black and grey
cells indicating climate spacewhere none of thefive pyromes had a relative frequency exceeding 0.2. (b)Geographical distribution of
pyrome classes, redrawn fromArchibald et al [5]. The three-letter pyrome abbreviations refer to the typical fire frequencies, intensities
andfire sizes of each pyrome, where FIL is Frequent-Intense-Large, FCS is Frequent-Cool-Small, RIL is Rare-Intense-Large, RCS is
Rare-Cool-Small, and ICS is Intermediate-Cool-Small.
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tropical savannasmakes annual production and subsequent desiccation of fuels highly predictable, fire activity
in forests andwoodlands is primarily constrained by themoisture content of the (inherently abundant) fuels,
which varies at (sub)daily tomonthly timescales [51–53]. The fuelmoisturemodels within several of the existing
globalfiremodels [9] are driven by some implementation of theNesterov index: ( )å= -w

=N T T T ,
i i dp i i1 ,

where w is the number of days since the last rainfall exceeding 3mmd−1,Ti is the daily 3 pmair temperature (°C)
andTdp i, the daily 3pmdewpoint temperature (°C). As shown by Schunk et al [54] theNesterov Indexwas a poor
predictor of themoisture content of 1-hour and 10-hour fuels from fourmain forest species inGermany.With
fuelmoisture variationmodelled by theNesterov index globalfiremodels lack the critical capacity to predict
when, or how frequently, forests andwoodlands switch from amoist/non-flammable state to a dry/flammable
state and are therefore unlikely to reproduce observed spatiotemporal variation in burned area in those biomes.
Substitution of theNesterov Indexwith amore reliable (physically-based) fuelmoisturemodel e.g., [55]would
likely improve predictions of burned area in forest biomes by thosemodels.

Our hydroclimaticmodel predicts potentialmean annual burned area and does therefore not require
predictions of daily fuelmoisture content; instead, themean annual climatic water deficit (D) is used as an
estimate of the probability of extant fuels drying out to ignitable levels during some fraction of the year.WithD
being ameasure of the atmosphericmoisture demand that cannot bemet by the soil water store [18],D captures
the basic biophysics involved in the desiccation of fuels and accounts for the fact that sparse fuels (lowE) require
less energy (E0) to dry out than dense/heavy fuels.

Further evidence forD being a reasonable indicator of themean annual probability of forests andwoodlands
being in a dry fuel state can be derived fromprevious studies on climate-fire relations in thewesternUnited
States [22, 23, 25, 56] and studies on dead fuelmoisture (Resco deDios et al 2015) andfire activity in temperate
forests of SEAustralia [51] andPortugal [53] that showed that cumulative burned area in these different forest
regions responds strongly non-linearly to predicted fine dead fuelmoisture content dropping below thresholds
identified at 14%–18%and 10%–12%, respectively. Using the Resco deDios et al [55] fuelmoisturemodel with
gridded global vapour pressure deficit data to predict daily fine dead fuelmoisture content for global forests and
woodlands, we found thatmean annualD is strongly and linearly related (adj. R2: 0.76, p< 2e-16) to themean
annual frequency of predicted dailyfine dead fuelmoisture content dropping below 10% (Supplementary
Material, S4).

The hydroclimaticmodel allowed us to objectively distinguish climatic domains for a predominance of
either fuel productivity (PL-type) or fuel dryness (DL-type) constraints onmean annual fractional burned area,
and showed their geographical distribution to be consistent with global patterns of herbaceous versus woody
vegetation types and corresponding fuel types, in accordancewith the varying constraints hypothesis [21].
Further, we demonstrated (see SupplementaryMaterial, S3) that the boundary between the domains of PL- and
DL-typefire is well approximated by an aridity index of 1.9 (1.94±0.02), providing the first objective
identification of where in climate space (figure 1(d)), and in geographical space (figure 2(c)),fire regimes switch
from fuel load limitations to fuelmoisture limitations.We showed that the hydroclimaticmodel and associated
classification in two contrasting climate-fire domains is largely consistent with the hydroclimatic distribution of
pyromes [5], indicating that key aspects of globalfire regimes vary in a predictable waywith global gradients in
mean annual precipitation and potential evapotranspiration. This suggests that ourmodel could be usedwith
ensembles of future climate projections to provide insights in the potential for (incremental) changes inmean
annual fractional burned area aswell as (transformational) changes in the role of fuel production or fuel dryness
constraints onfire e.g. [19]

By focusing exclusively on the roles of fuel production and fuel dryness constraints, our hydroclimaticmodel
was designed to predict the potential ormaximummean annual fractional burned area, which provides a useful
reference for bottom-up process-basedmodelling approaches used inmanyDGVMs [7–9]. Ourmodel could
also be used in combinationwith data-driven approaches to predicting annual, rather than potentialmean
annual, fractional burned area bymodelling the annual deviations between predicted F0.99 and observed annual
fractional burned area. Recent statisticalmodels of interannual variation in burned area, partly captured climate
constraints onfire via fuel production and dryness, but could only explain 30%–40%of the global variation in
burned area [25] or showed good agreement between predictions and remotely sensed burned area in only 31%–

56%of the global land surface area [10]. Better performancemay be achieved by focusing on prediction of
annual ormonthly deviations from a long-termpotential burned area level (e.g. F0.99) as a function of annual or
seasonal anomalies in climate conditions plusmetrics that capture fireweather and ignition constraints onfire
activity at shorter time scales, thus completing the formalisation and implementation of the four-switch concept
[17]. Other futurework could also examine the drivers, such as firemanagement and other human activities, of
geographical variation between F and F .0.99
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5. Conclusion

At long time scales the global distribution offire is highly predictable from fundamental biophysical constraints
on the production and seasonal desiccation of plant biomass (i.e. fuel), which in turn are proportional tomean
annual precipitation and potential evapotranspiration. The sharp transition of globalfire regimes fromdomains
of fuel production limitations onfire (PL-type) to fuel dryness limitations onfire (DL-type) can be identified
from themean annual aridity index being above or below a threshold value of∼1.9.Ourmodel provides a simple
but comprehensive basis for predicting fire potential under current and future climates, as well as an overarching
framework for estimating effects of human activity via ignition regimes andmanipulation of vegetation. In these
respects, it offers a significant advance on existing globalfiremodels and therefore a basis for improving
predictions from coupled global vegetationmodels.
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