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Abstract

The distribution of fire on Earth has been monitored from space for several decades, yet the geography
of global fire regimes has proven difficult to reproduce from interactions of climate, vegetation,
terrain, land use and other human activities by empirical and process-based fire models. Here, we
propose a simple, yet robust, model for the global distribution of fire potential based on fundamental
biophysical constraints controlling fire activity in all biomes. In our ‘top-down’ approach we ignored
the dynamics of individual fires and focus on capturing hydroclimatic constraints on the production
and (seasonal) desiccation of fuels to predict the potential mean annual fractional burned area at 0.25°
spatial resolution, here estimated by the 0.99 quantile of the observed mean annual fractional burned
area (Fy 99) over the 1995-2016 period of the Global Fire Emissions Database (GFED4). We show that
80% of the global variation in F 9 can be explained from a combination of mean annual precipitation
and potential evapotranspiration. The proposed hydroclimatic model reproduced observed 0.99
quantile fire activity levels equally well across all biomes and provided the first objective underpinning
for the dichotomy of global fire regimes in two domains characterised by either fuel production
limitations on fire or fuel dryness limitations on fire. A sharp transition between the two climate-fire
domains was found to occur ata mean annual aridity index of 1.9 (1.94 £ 0.02). Our model provides a
simple but comprehensive basis for predicting fire potential under current and future climates, as well
asan overarching framework for estimating effects of human activity via ignition regimes and
manipulation of vegetation.

1. Introduction

Satellite-based Earth observation is providing an increasingly accurate picture of global fire patterns [1-4]. The
highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and
Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth [5]. The
particular combinations of these fire characteristics, or fire regimes [6], are known to emerge from the combined
influences of climate, vegetation, terrain and land use, but their global distribution has so far proven difficult to
reproduce by mathematical models [7-9]. Most current land surface models (LSMs) and Dynamic Global
Vegetation Models (DGVMs) have some capacity to simulate fire activity from basic environmental variables but
predictions [8, 10] usually only agree with observations in some biomes (e.g. savannas of the Sub-Saharan
Africa), while disagreeing in others (e.g. boreal forests of North-America). Humans add further complexity to
global fire patterns by, amongst others, changing vegetation community composition, structure and
flammability, active use of fire to clear land or reduce fire hazard, and fire suppression [11-14]. The limited
ability of current models in predicting global fire patterns suggests that their fire modules fail to capture some
aspects of the biophysics that control fire activity across different environments. Incomplete understanding of
biophysical drivers and constraints that underlie current global fire patterns creates uncertainty in model
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predictions of how fire regimes, fire-prone ecosystems and related biogeochemical cycles may respond to rising
atmospheric [CO,] and climate change [15].

Here, we go back to the fundamental biophysics of fire to formulate a simple, yet robust, model for the
prediction of potential mean annual levels of fire activity across all global biomes. For this study we define fire
activity in terms of the climatological mean annual fractional burned area, F, of the landscape or land area unit,
ranging from 0 in long unburnt landscapes to 1 in landscapes that burn completely on an annual basis [2]. By
predicting Fwe ignore the dynamics of individual fires, but this is appropriate in our view given the fact that
most fires are orders of magnitude smaller e.g., [5, 16] than the typical grid size (e.g. 0.5° % 0.5°) of LSMs and
DGVMs.

Building on Bradstock’s [17] ‘four-switch’ concept we assume that four fundamental conditions need to be
met for alandscape fire to occur: (i) there must be enough plant biomass (i.e. fuel) to carry a fire, (ii) the extant
fuel must be dry enough to be ignitable, (iii) weather conditions need to be favourable (i.e. hot, dry and windy)
for a fire to spread, and (iv) there must be an ignition. Bradstock [17] conceptualized these conditions as four
‘switches’ in a series circuit that need to be ‘on’ for a fire to occur. While any fire will require alignment of all four
switches at some pointin time, in the context of modelling global fire patterns we emphasize that the four
switches operate at disparate time scales, with an associated hierarchy of conditional constraints on fire: (1)
production of plant biomass and build-up of fuel loads occurs over months to years, (2) fuels dry out over weeks
to months, and (3) fire weather varies over time scales of hours to days, while (4) ignitions are instantaneous
events. Therefore, we hypothesize that the mean annual fractional burned area (F) can be predicted from long-
term fuel production and fuel drying rates (i.e. switches 1-2), while information on fire weather and ignitions
(i.e. switches 3—4) is only required when modelling the specific attributes of individual fires (e.g. size and burn
pattern). The hierarchical organization of the four switches further implies that the mean annual fractional
burned area predicted from long-term fuel production and fuel drying rates alone represents an upper limit of
mean annual fire activity that is only reached when fire weather and ignition limitations are minimal.

To test the hypothesis that the upper quantiles of F can be predicted from long-term fuel production and
drying rates we analysed global burned area data together with indices of fuel productivity and fuel dryness, both
calculated from the climatic water balance [18]. Building on the methods developed in a previous study of
Australian fire regimes [ 19], we propose a new global model that predicts the long term upper limit (i.e. the 0.99
quantile, [20]) of the mean annual fractional burned area, F g9, from two basic hydroclimatic variables: mean
annual precipitation, P, and potential evapotranspiration, Ey. The model provides a framework to quantify the
relative importance of either fuel productivity or fuel dryness constraints on Fy o9, which we hypothesized to vary
with the global distribution of land cover types and corresponding fuel types. Consistent with the varying
constraints hypothesis [21], in dryland environments with grassy fuels we expected F g9 to be primarily limited
by fuel productivity constraints (i.e. increase with P), while in more mesic environments dominated by woody
vegetation and litter fuels F g9 was expected to be limited primarily by fuel dryness constraints (i.e. increase with
Ey). Other studies [22, 23], focusing on fire regimes in the western USA, have related climatic water balance
terms to seasonal area burned and interpreted the strength and sign of correlations to infer predominance of fuel
production or fuel dryness constraints on fire at Bailey [24] ecosection level. Abatzoglou et al [25] showed that
interannual variation in global burned area was positively correlated with climatic indices of fuel aridity in
forested ecoregions and with cumulative precipitation prior to the fire season in non-forested ecoregions. To
our knowledge the present study is the first to develop a universal hydroclimatic model that explains both global
variation in burned area as well as the dichotomy of global fire regimes in two domains of either fuel production
or fuel dryness limitations on fire. Finally, we explored whether the global distribution of contemporary fire
regime classes or ‘pyromes’ as classified by Archibald et al [5] on the basis of five fire regime metrics (i.e. fire
return interval, maximum fire intensity, length of fire season, maximum fire size, mean annual area burned) was
associated with the relative importance of fuel productivity or fuel dryness constraints on Fj g.

2. Materials and methods

2.1. Modelling approach

In this study our aim was to predict the global distribution of potential mean annual fractional burned area
(Fy.99) as a function of basic biophysical constraints on the production and dryness of fuel material. Following
Boer et al [19], we assumed that both the production and drying of fuel material are essentially functions of the
local water and energy budgets available for the production and desiccation of plant biomass. The long-term
climatic water balance, calculated from mean annual Pand Ej, captures these interactions of biologically
available water and energy [ 18]. When calculated over long time scales (>>years) and broad spatial scales
(>>km?), changes in the soil water store and lateral water inputs can be assumed to be negligible so that the
climatic water balance isreducedto: P — Q — E = 0, where Qis runoff/drainage losses and E is actual
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evapotranspiration. Here, we assume that seasonal lags between climate and fuel conditions can be ignored
when relating mean annual burned area to mean annual water balance. E is a reliable predictor of continental
patterns of annual primary productivity at annual timescales [26, 27] and therefore a reasonable proxy for fuel
production rates [28, 29]. Similarly, the potential for drying of fuel material can be assumed to be proportional to
the atmospheric moisture demand (xEy) that cannot be met by available water (xE), which is the climatic water
deficit as defined by Stephenson [18], D = E; — E. Forlong timescales and large land areas, E can be predicted
from P and E using the semi-empirical Budyko curve [30-32], which provides a global model for the
partitioning of mean annual precipitation in runoff and evapotranspiration as a function of climatic aridity:

E= P\/% tanh (%)1[1 - exp(—%)] (@)

where P, Ej and E are mean annual precipitation, potential evapotranspiration and actual evapotranspiration,
respectively, and (%) is the aridity index. The reader is referred to Wang et al [33] for a review on applications of

the Budyko framework in hydrology and water balance modelling.

Recently, Boer et al [19] demonstrated that continental patterns of Fj ¢ in Australia can be accurately
predicted from mean annual E and D, which can be approximated from P and E,. Since most global fire regime
classes are represented in Australia [5, 34], we hypothesized that the global distribution of F, ¢ can also be
modelled as a function of mean annual E and D. Here we present a new global F; g9 model that consists of two
flexible sigmoidal functions, Fy¢9(E) and Fyg9(D), describing the increase in F, g9 with mean annual actual
evapotranspiration (E) and climatic water deficit (D), respectively:

E;
E, — E E |(E—E)
Fooo(E) = |1 + == -
E — E || E

with0 < E < E,

Fooo(E) =1 forE > E, 2)
Dy
D, — D D |(D,—Dy)
Fooo(D) = |1 + 22— || =
D, — D || D;
with0 < D < D,

F()'99(D) = 1forD > D2 (3)
Fo.99(E, D) = EpnaxFo.99(E) Fo.99(D) 4)

where F,,,, is the global maximum of F, g9, here setat 1. The shape of F, ¢9(E) and Fy 99(D) is set by two
parameters [35]: E; (or D) is the value at which F; g9 increases most strongly with E (or D), and E, (or D,) the
value at which F, g9 becomes irresponsive to further increase of E (or D). Since the two predictor variables, E and
D, are notindependent, the fitted E, D, F, g9 response surface was mapped to (orthogonal) axes of Pand E,
before interpreting the shape of the response surface in terms of global variation in biophysical constraints on
potential fire activity.

2.2.Data

2.2.1. Burned area

Global annual burned area data at 0.25° x 0.25° spatial resolution for the period July 1995-June 2016 were
obtained from the GFED4 database, which has been widely used in global fire modelling studies. For full details
on the GFED4 database, including caveats and limitation, the reader is referred to Giglio et al [2]. The mean
annual fractional burned area, F, was calculated by summing the burned areas within each grid cell for the entire
observation period and dividing by the area of the grid cell and the duration of the observation period.

2.2.2. Climatic water balance

Gridded mean annual precipitation for 1950-2000, P, was obtained from WorldClim [36], while gridded mean
annual potential evapotranspiration for 1960-1990, E,, based on the Hargreaves method [37, 38], was obtained
from the Global Aridity and Potential Evapotranspiration Data base at CGIAR-CSI (http:/ /www.cgiar-csi.org/
data/global-aridity-and-pet-database). Both climate layers have a spatial resolution of 30 arcseconds and were
resampled to the 0.25° x 0.25° grid of the GFED4 data base using bilinear interpolation. Mean annual actual
evapotranspiration, E, was predicted from P and E, using the Budyko curve (equation (1)).
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2.2.3. Landcover and fuel types

This study focused on areas of (semi-)natural vegetation. The corresponding vegetation mask was constructed
from the Land Cover Type product (MCD12Q1_V51) of the Moderate Resolution Imaging Spectroradiometer
(MODIS), which corresponds to the end of the burned area and climate observation period used for our model.
We first resampled the MCD12Q1_V51 data layer to the 0.25° x 0.25° grid of the GFED4 data base, using
nearest neighbour interpolation, and then reclassified grid cells of excluded land cover types (i.e. water,
cropland, urban and built-up, cropland/natural vegetation mosaics, snow and ice, barren or sparsely vegetated)
to missing values.

2.3. Data analyses

2.3.1. Model fitting and validation

Data analyses focused on the modelling of the global distribution of F g as a function of mean annual Eand D
(equations (2)—(4)) and on the interpretation of the model in terms of its consistency with current understanding
of global fire patterns. Our complete data set consisted of estimates of mean annual F, P, Ey, and E for 193,476
grid cells covering the selected land cover types of the global land area, except Antarctica, at 0.25° x 0.25° spatial
resolution. A randomly selected sample of 50% of the grid cells was used for model fitting, while the other 50%
of the data was set aside for model validation. We used R [39] for all data analyses, in particular the ‘raster’ [40]
and ‘quantreg’ packages [41].

Non-linear quantile regression was used to fit equation (4) to the 0.99 quantile of Fas a function of mean
annual Eand D. To minimize bias in the model towards the most common global climates (e.g. desert or boreal
climates), we used a simple bootstrap procedure of two steps: (i) the global E, D space was divided into 100 mm
by 100 mm bins and all climate bins with a minimum of 100 grid cells identified (n = 145), (ii) a random sample
(with replacement) of 100 grid cells was drawn from these bins, and (iii) equation (4) was fitted to the sample
data. This procedure was run 1000 times to generate 1000 response surfaces from which amean F; g9 response
surface was calculated [42].

Model predictions were validated against the 50% of the data that was not used for model fitting. To do so the
validation data was binned into 100 mm x 100 mm wide E, D bins and the corresponding values of F; g9
identified for all bins with a minimum of 50 observations (n = 191). Predicted values of F, ¢9 were extracted
from the modelled mean response surface for the same set of 191 E, D data pairs. Observed values of F gg
correspond to the 0.99 quantile value of Fin each of the 191 100 mm x 100 mm E, D bins. The relationship
between observed and predicted F, g9 was evaluated by linear regression analysis. Deviations between observed
and predicted F g9 were quantified using the mean difference (MD) and root mean squared difference (RMSD):

MD =>(j, — y)/n ®)
i=1

RMSD = [> (5 — y)*/n (6)
i=1

where 7, y; are predicted and observed values of F g9 and n = 191. To measure agreement between the spatial
patterns of observed and predicted F g9, we used the normalised mean error NME) and normalised mean
squared error (NMSE), as proposed by Kelley et al[43]:

NME:ZI}%*%-I/ZI)/,-*?I (7)
NMSE = (7, = /S0, = 7 ®)

where ) is the predicted value of F gq at grid cell i, y; the corresponding observed value, and 7 the mean of all
observed values. By normalising by the spatial variability of the observations, NME and NMSE provide a
measure of the spatial error of the model, with NME or NMSE close to 0 indicating perfect agreement between
observed and predicted patterns, and both metrics approaching unity when agreement is similar to that of a
model that predicts a spatially uniform value equal to the mean of all observations [43].

2.3.2. Identification of climate-fire domains
Following Boer et al [19] two climate-fire domains were distinguished on the P, E,, F, 9 response surface
depending on whether the direction of the F g9 gradient was more parallel to the local E gradient or D gradient,
indicating predominance of fuel productivity or fuel dryness limitation on fractional burned area, respectively.
The boundary between the two climate-fire domains was identified analytically using a gradient analysis of the
Fy.99 response surface relative to gradients of Eand D in P, E space (Supplementary Material, S3).

Asin Boer et al[19] we refer to these two domains as productivity-limited (PL) fire and dryness-limited (DL)
fire domains and analysed whether the affinity to either domain was related to the vegetation type being
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Figure 1. (a) Mean annual actual evapotranspiration (E, mm.y "), (b) climatic water deficit (D, mm.y "), and (c) the 0.99 quantile of
mean annual fractional burned area (F 9) as functions of mean annual precipitation (P) and potential evapotranspiration (Ey). (d)
Distribution of the domains of PL- and DL-type fire in P, E space, with contours of the Fy 99 model in grey. Coloured dots in panel
(c) correspond to independent observations of Fy g9 used for validation.

dominated by grasses/herbaceous or woody plants. To this end, areas of homogeneous land cover type were
identified on the GlobeLand30 map [44]. The GlobeLand30 product [44] is based on 30 m resolution Landsat
imagery and classifies land cover types according to the dominant plant life form (e.g. forest, shrubland and
grassland), which can be more readily related to distinct fuel types than biome classifications that often include
classes of mixed life forms (e.g. woody savanna in MCD12Q1_V51). A large random sample (n = 9,053) of ca.
30km x 30 km areas of homogeneous land cover type was drawn by sampling 16 blocks of 1000 x 1000, 30 m
grid cells from each of the 853 GlobeLand30 tiles and keeping all blocks with at least 75% in a single land cover
class. The geographical coordinates of the 9,053 homogeneous sample blocks were first used to extract
corresponding values of Pand E, from the climate grids, which were then used to extract the corresponding
domain class from the P, E, F, 9 response surface.

The distribution of the five global fire regime classes (‘pyromes’) distinguished by Archibald et al [5] over the
productivity-limited (PL) and dryness-limited (DL) fire domains was analysed by: (i) mapping all grid cells of the
global pyrome map (i.e. figure 2 in 5) to the P, E,, Fj g9 response surface via their corresponding mean annual P
and Ey, (ii) dividing the global P, E; space in 100 mm x 100 mm bins and identifying the pyrome class with the
highest relative frequencyin all P, E, bins with a minimum of 50 data points (n = 185), (iii) a qualitative
evaluation of the consistency of the predicted F, ¢ and relative importance of fuel production and fuel dryness
constraints on fire with the defining characteristics of the five pyrome classes [5].

3. Results

3.1.Burned area
The 0.99 quantile of the mean annual fractional burned area, F, g9, was found to be a highly predictable function
of the climatic water balance terms E and D, and therefore of mean annual precipitation (P) and potential
evapotranspiration (Ey) (figures 1(a)—(c)). The means and confidence intervals of the fitted model coefficients
are listed in table 1.

Linear regression analysis of observed versus predicted F, g9 for validation sites showed that the
hydroclimatic model (equation (4), figure 1(c)) explained 80% of the global variation in Fy g9 (R*> = 0.80), witha
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Table 1. Mean and 95% confidence intervals of model
coefficients (equation (4)) obtained from 1000 model fits.

Coefficient Dimension Mean 95% Cls
E, mm.y ! 577 554,597
E, mm.y ! 976 952,1126
D, mm.y ! 607 591,626
D, mm.y ! 1034 986, 1088

Mean Difference (MD) between observed and predicted values of 0.05, Root Mean Squared Deviations (RMSD)
0f 0.14, Normalised Mean Error (NME) of 0.45 and Normalised Mean Square Error (NMSE) of 0.27. Further
details on the validation of the F g9 model are provided in Supplementary Material, S1 (available online at
stacks.iop.org/ERC/3/035001 /mmedia).

According to the GFED4 data base [2], global burned areas amounted to 2.3% of the terrestrial land area per
year over the 1995-2016 observation period. The observed mean annual fractional burned area, F, was highest in
the tropical savanna regions of Africa, Australia and (to a lesser extent) South America, where Fvalues in the
0.3-0.4 range were common and as high as 0.7-0.8 in localized areas. In other fire-prone environments, F was
much lower, with values of up to ~0.10 for shrublands and in the 0.01-0.03 range for most forests.

The predicted global pattern of F; g5 was very similar to the observed pattern of Fin the tropical savannas of
Sub-Saharan Africa and Australia, where tropical wet-dry climates combine high levels of fuel production
during the wet season with intense drought during the dry season, producing F values as high as 0.8-1.0
(figures 2(a)—(b)). In woody ecosystems outside of the tropical savannas and semiarid grasslands Fj g9 seldom
exceeded 0.5, which is consistent with the fact that most predominantly woody vegetation communities cannot
survive such high levels of fire activity over long periods [45]. Zonal medians of predicted Fj g9 were 0.17 for
Mediterranean forests, woodlands and scrub, 0.05-0.12 for temperate forests, and 0.01 for boreal forest
environments (Supplementary Material, S2).

3.2. Climate-fire domains

Thefitted P, E,, Fyq9 response surface consists of two distinct domains (figure 1(d)) characterized by different
climate constraints on fire [19]. The first domain (green zone in figure 1(d)) is characterized by F ¢ increasing
with mean annual actual evapotranspiration (E) but not with variation in climatic water deficit (D), consistent
with potential fire activity levels being primarily limited by fuel production (hereafter: PL-type fire). In the
second domain (orange zone in figure 1(d)), F g9 increases strongly with D but varies little with increasing E,
consistent with potential fire activity levels being primarily limited by the capacity of the atmosphere to dry-out
fuel material to ignitable levels (DL-type fire).

Avisual interpretation of the fitted P, E,, Fj 99 response surface suggests that the domain shift from PL-type
fire to DL-type fire occurs at some threshold aridity index (i.e. the ratio of mean annual potential
evapotranspiration and precipitation: %). The equation for the boundary between the two domains can be derived
analytically from equations (1)—(4) and is approximately linear for the region covered by the observations:

Ey = (1.94 + 0.02)P(p < 0.001and R? = 0.996) (Supplementary Material S3). Using gridded mean annual
climate data, the domains of PL- and DL-type fire were mapped to geographical space (figure 2(c)). The global
pattern of PL- and DL-type fire is similar to the global distribution of climate aridity and biome types, as expected
given that the boundary between PL- and DL-type fire corresponds to an aridity index of ~1.9. Dryland
environments at mid latitudes on all continents were classified in the domain of PL-type fire, while wet and cold
environments at all latitudes were classified in the domain of DL-type fire. The domain classification indicates
whether the primary limiting factor on mean annual fire activity levels was fuel production or fuel dryness, which
can be expected to correlate strongly with the dominant vegetation lifeform and fuel type (litter versus grass). Using
the GLC30 global lifeform mapping [44] we found that areas of forest, wetland and tundra were predominantly
classified in the domain of DL-type fire (i.e. they are typically too wet to burn for much of the time), whereas
grasslands, shrublands and barren lands were predominantly classified in the domain of PL-type fire (i.e. fuels are
typically sparse and discontinuous for much of the time) (figure 3). The shrubland class is an interesting case: these
ecosystems occur most frequently in the domain of PL-type fire even though they are dominated by woody
vegetation and woody plant litter forms an important fuel component. However, classification as PL-type fire
makes sense because (semiarid and arid) shrublands can often only support large fires when herbaceous vegetation
fills in the gaps and connects the fuel array after above-average rainfall e.g., [46, 47].

As expected, the five pyromes distinguished by Archibald et al [5] were found to occupy distinct domains in
P, E, climate space (figure 4): (i) the ‘RIL’ pyrome, characterized by rare, intense, large fires was restricted to low
Penvironments in the climate domain of PL-type fire (green grid cells, figure 4) with a median predicted F, ¢ of
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Figure 2. (a) Observed (1995-2016) mean annual fractional burned area (F). (b) Predicted 0.99 quantile of mean annual fractional
burned area (Fo99). (c) Geographical distribution of domains of PL- and DL-type fire in green and orange tones, respectively. In white
land areas the observed mean annual fractional burned area was negligible (F < 0.000001).

0.05, consistent with its geographical distribution in the more arid zones of boreal forests and temperate coniferous
forests, plus areas of Mediterranean vegetation and xeric vegetation; (ii) the ‘FIL’ pyrome, characterized by
frequent, intense, large fires (vellow grid cells, figure 4), was found in the climate domain of PL-type fire across a
broad range of mean annual P combined with high E and with a median predicted F, g9 0f 0.55, which is typical
for the tropical savannas in Australia and Africa where this pyrome prevails; (iii) the ‘FCS’ pyrome, characterized by
frequent, cool (low-intensity), small fires (orange grid cells, figure 4), was found across both climate domains in the
region that combines high P, high E,, and very high predicted F; 99 (median = 0.63), corresponding mainly to
tropical grasslands and shrublands as well as tropical dry broadleaf forests; iv) the ‘RCS’ pyrome, characterized by
rare, cool, small fires (pink grid cells, figure 4) was found mostly in the domain of DL-type fire in the region of
intermediate Pand E, with the median of predicted F g¢ just below 0.09.

The geographical distribution of the RCS pyrome spans all continents and a range of biomes, including large
fractions (0.4-0.5) of boreal forests, temperate coniferous and broadleaf forests, as well as smaller fractions
(0.2-0.4) of Mediterranean vegetation and Montane grasslands; (v) the ‘ICS’ pyrome, the most human-driven’
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Figure 3. Distributions of probabilities of classification in the domain of DL-type fire for a large sample (n = 9053) of 30 km x 30 km
areas of homogenous landcover drawn from the GLC30 global lifeform database [44]. Bars are coloured green where P(DL-type) < 0.5,
to indicate prevailing affinity to the domain of PL-type fire, and coloured orange where P(DL-type) > 0.5 to indicate prevailing affinity
to the domain of DL-type fire.

pyrome according to Archibald et al [5], is characterized by intermediate frequency of cool, small fires (blue grid
cells, figure 4) and was found in both climate domains, PL- and DL-type, across wide ranges of P and E, which
translates to a wide range of predicted Fy g9 (median = 0.25). The geographical distribution of the ICS pyrome is
also widespread, including large fractions (0.4-0.6) of all tropical forest biomes, and smaller but substantial
fractions (0.2-0.4) of temperate forests, (tropical) grasslands and shrublands, which is consistent with the spread
across climate domains of both fuel productivity limitations (PL-type) and fuel dryness limitations (DL-type).

4. Discussion

This study has shown that climate sets strong and highly predictable constraints on the global distribution of fire
on Earth. In particular, climate constrains the amounts and timing of plant available water and energy and
thereby determines the probability that the two most basic conditions for fire are met, namely the production
and desiccation of plant biomass and derived fuels. We showed that the strength of those two fundamental
climate constraints on fire, and global variation therein, are captured well by the mean annual climatic water
balance, which provides a simple yet biophysically sound basis for the prediction of potential fractional burned
area from just two readily available climate variables: mean annual precipitation and potential
evapotranspiration. The proposed hydroclimatic model was validated against independent burned area data and
found to explain 80% of the global variation in potential fractional burned area (F, ¢9) with a slight tendency to
overpredict Fy g9, but an NME of 0.45 indicating good agreement between predicted and observed spatial
patterns of Fj g¢. A direct comparison of model performance with existing global fire models is difficult since
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Figure 4. (a) Distribution of global pyrome classes [5] in P, E space, with contours of the fitted global F g9 model in black and grey
cells indicating climate space where none of the five pyromes had a relative frequency exceeding 0.2. (b) Geographical distribution of
pyrome classes, redrawn from Archibald et al [5]. The three-letter pyrome abbreviations refer to the typical fire frequencies, intensities
and fire sizes of each pyrome, where FIL is Frequent-Intense-Large, FCS is Frequent-Cool-Small, RIL is Rare-Intense-Large, RCS is
Rare-Cool-Small, and ICS is Intermediate-Cool-Small.

most existing models predict F rather than F, o9 and systematic evaluation of their performance is ongoing as
part of the fire modelling intercomparison project (FIREMIP) [7-10, 48]. Our hydroclimatic model is
conceptually similar to a global model proposed by Kelley et al [49] that predicts burned area as a function of
four limitations (i.e. fuel continuity, fuel moisture, potential ignitions and a suppression index). Kelley et al [49]
report an NME score of 0.60—0.63 for their model predictions of mean annual burned area against the GFED4s
data set [2, 50], indicating a lack of agreement between the spatial pattern of predicted and observed burned area.

Overprediction of F, g9 by our model was somewhat more pronounced in environments of the DL-type fire
than in environments of PL-type fire (see Supplementary Material, S1), but model residuals had similar
distributions for a wide range of MODIS landcover types, supporting the notion that the model captures the
main climatic constraints on global fire activity levels. Our model fitting approach, which sought to avoid
dominance of the most common fire-prone environments on Earth such as tropical savannas, will have
contributed to the relatively good performance of the model across a broad range of hydroclimatic conditions.
Existing fire models tend to struggle predicting the fire regimes of temperate and boreal forest regions, that burn
much more infrequently than tropical savannas [5], but we did not observe that model fit suffered in any
particular biome because we employed a mechanistic, hydroclimatic approach that captured the fundamental
biophysics underlying global fire regimes.

The bias in performance of existing global fire models is likely due to a limited capacity to simulate fuel
drying dynamics in forest and woodland environments [8, 10]. Whereas the seasonally wet-dry climate of
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tropical savannas makes annual production and subsequent desiccation of fuels highly predictable, fire activity
in forests and woodlands is primarily constrained by the moisture content of the (inherently abundant) fuels,
which varies at (sub)daily to monthly timescales [51-53]. The fuel moisture models within several of the existing
global fire models [9] are driven by some implementation of the Nesterovindex: N = Z:”: (T — Tap,) T,
where w is the number of days since the last rainfall exceeding 3 mm d ™', 7; is the daily 3 pm air temperature (°C)
and Ty, ; the daily 3pm dew point temperature (°C). As shown by Schunk et al [54] the Nesterov Index was a poor
predictor of the moisture content of 1-hour and 10-hour fuels from four main forest species in Germany. With
fuel moisture variation modelled by the Nesterov index global fire models lack the critical capacity to predict
when, or how frequently, forests and woodlands switch from a moist/non-flammable state to a dry/flammable
state and are therefore unlikely to reproduce observed spatiotemporal variation in burned area in those biomes.
Substitution of the Nesterov Index with a more reliable (physically-based) fuel moisture model e.g., [55] would
likely improve predictions of burned area in forest biomes by those models.

Our hydroclimatic model predicts potential mean annual burned area and does therefore not require
predictions of daily fuel moisture content; instead, the mean annual climatic water deficit (D) is used as an
estimate of the probability of extant fuels drying out to ignitable levels during some fraction of the year. With D
being a measure of the atmospheric moisture demand that cannot be met by the soil water store [18], D captures
the basic biophysics involved in the desiccation of fuels and accounts for the fact that sparse fuels (low E) require
less energy (E,) to dry out than dense/heavy fuels.

Further evidence for D being a reasonable indicator of the mean annual probability of forests and woodlands
beingin a dry fuel state can be derived from previous studies on climate-fire relations in the western United
States [22, 23, 25, 56] and studies on dead fuel moisture (Resco de Dios ef al 2015) and fire activity in temperate
forests of SE Australia [51] and Portugal [53] that showed that cumulative burned area in these different forest
regions responds strongly non-linearly to predicted fine dead fuel moisture content dropping below thresholds
identified at 14%—18% and 10%—12%, respectively. Using the Resco de Dios et al [55] fuel moisture model with
gridded global vapour pressure deficit data to predict daily fine dead fuel moisture content for global forests and
woodlands, we found that mean annual D is strongly and linearly related (adj. R*: 0.76, p < 2e-16) to the mean
annual frequency of predicted daily fine dead fuel moisture content dropping below 10% (Supplementary
Material, S4).

The hydroclimatic model allowed us to objectively distinguish climatic domains for a predominance of
either fuel productivity (PL-type) or fuel dryness (DL-type) constraints on mean annual fractional burned area,
and showed their geographical distribution to be consistent with global patterns of herbaceous versus woody
vegetation types and corresponding fuel types, in accordance with the varying constraints hypothesis [21].
Further, we demonstrated (see Supplementary Material, S3) that the boundary between the domains of PL- and
DL-type fire is well approximated by an aridity index 0f 1.9 (1.94 £ 0.02), providing the first objective
identification of where in climate space (figure 1(d)), and in geographical space (figure 2(c)), fire regimes switch
from fuel load limitations to fuel moisture limitations. We showed that the hydroclimatic model and associated
classification in two contrasting climate-fire domains is largely consistent with the hydroclimatic distribution of
pyromes [5], indicating that key aspects of global fire regimes vary in a predictable way with global gradients in
mean annual precipitation and potential evapotranspiration. This suggests that our model could be used with
ensembles of future climate projections to provide insights in the potential for (incremental) changes in mean
annual fractional burned area as well as (transformational) changes in the role of fuel production or fuel dryness
constraints on firee.g. [19]

By focusing exclusively on the roles of fuel production and fuel dryness constraints, our hydroclimatic model
was designed to predict the potential or maximum mean annual fractional burned area, which provides a useful
reference for bottom-up process-based modelling approaches used in many DGVMs [7-9]. Our model could
also be used in combination with data-driven approaches to predicting annual, rather than potential mean
annual, fractional burned area by modelling the annual deviations between predicted F g9 and observed annual
fractional burned area. Recent statistical models of interannual variation in burned area, partly captured climate
constraints on fire via fuel production and dryness, but could only explain 30%—40% of the global variation in
burned area [25] or showed good agreement between predictions and remotely sensed burned area in only 31%-—
56% of the global land surface area [10]. Better performance may be achieved by focusing on prediction of
annual or monthly deviations from a long-term potential burned area level (e.g. Fy 99) as a function of annual or
seasonal anomalies in climate conditions plus metrics that capture fire weather and ignition constraints on fire
activity at shorter time scales, thus completing the formalisation and implementation of the four-switch concept
[17]. Other future work could also examine the drivers, such as fire management and other human activities, of
geographical variation between Fand F, go.
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5. Conclusion

Atlong time scales the global distribution of fire is highly predictable from fundamental biophysical constraints
on the production and seasonal desiccation of plant biomass (i.e. fuel), which in turn are proportional to mean
annual precipitation and potential evapotranspiration. The sharp transition of global fire regimes from domains
of fuel production limitations on fire (PL-type) to fuel dryness limitations on fire (DL-type) can be identified
from the mean annual aridity index being above or below a threshold value of ~1.9. Our model provides a simple
but comprehensive basis for predicting fire potential under current and future climates, as well as an overarching
framework for estimating effects of human activity via ignition regimes and manipulation of vegetation. In these
respects, it offers a significant advance on existing global fire models and therefore a basis for improving
predictions from coupled global vegetation models.
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