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Abstract: Migratory birds are particularly exposed to habitat changes in their breeding and non-
breeding grounds. Remote sensing technologies offer an excellent opportunity to monitor species’
habitats from space at unprecedented spatiotemporal scales. We analyzed if remotely sensed ecosys-
tem functioning attributes (EFAs) adequately predict the spatiotemporal variation of the Woodcock’s
(Scolopax rusticola) relative abundance in southwest Europe, during autumn migration and wintering
periods. We used data gathered from Woodcock monitoring through citizen science (N = 355,654
hunting trips) between 2009 and 2018. We computed a comprehensive set of EFAs on a weekly basis
from three MODIS satellite products: enhanced vegetation index (EVI), tasseled cap transforma-
tion (TCT), and land surface temperature (LST). We developed generalized linear mixed models to
explore the predictive power of EFAs on Woodcock’s abundance during the non-breeding season.
Results showed that Woodcock abundance is correlated with spatiotemporal dynamics in primary
productivity (measured through the EVI), water cycle dynamics (wetness component of TCT), and
surface energy balance (LST) in both periods. Our findings underline the potential of combining
citizen science and remote sensing data to monitor migratory birds throughout their life cycles—an
issue of critical importance to ensure adequate habitat management in the non-breeding areas.

Keywords: remote sensing; EFAs; Scolopax rusticola; monitoring; citizen science; abundance; non-
breeding; migration

Remote Sens. 2022, 14, 463. https://doi.org/10.3390/rs14030463 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030463
https://doi.org/10.3390/rs14030463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2363-1660
https://orcid.org/0000-0003-1983-936X
https://orcid.org/0000-0002-6615-0218
https://orcid.org/0000-0003-1444-377X
https://doi.org/10.3390/rs14030463
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030463?type=check_update&version=3


Remote Sens. 2022, 14, 463 2 of 22

1. Introduction

In the face of rapid global environmental changes, it is increasingly important to
understand the main factors affecting species’ habitats throughout their annual life cycle [1].
The status of habitats in wintering and migratory seasons becomes critical for species that
spend part of the year in different regions. These species are particularly exposed to changes
in conditions and resources. Several aspects of ecosystem functioning relevant for species
have been severely affected by climate and land-use change over recent decades [2]. As the
annual life cycle of migratory species involves movements between different locations, it
becomes more complex to evaluate the influence of interannual environmental changes
in these species [3,4]. Managers and decision makers need to be updated with the best
information available on the status of both breeding and non-breeding populations to
protect them effectively.

Advances in geographic information systems (GIS) and remote sensing for Earth
observation have significatively improved our ability to understand, monitor, and fore-
cast species distribution changes over recent decades [5,6]. Combining both technologies
provides a broad spectrum of environmental data at unprecedented spatiotemporal scales
offering increasing amounts of information about the entire planet [7–9]. In addition, eco-
logical modeling has also received greater attention in recent years due to its wide range
of applications for the study and conservation of biodiversity [5,10]. Species distribution
models (SDMs), based on the assessment of species’ ecological niches, link georeferenced
observations of a biotic response variable such as the occurrence or abundance of species
with several environmental predictors through a wide range of statistical or machine learn-
ing algorithms. These techniques are powerful tools for conservation biology, allowing
predictions of habitat suitability and the probability of species occurrence with relatively
high accuracy [11] even when complete information of their entire distributional range
is not available [6,12]. Therefore, SDMs are very useful to fill knowledge gaps about the
geographic distribution of species. SDMs have been used to identify priority areas for
conservation, assess environmental impacts, and predict future environmental changes,
making it possible to manage critical resources or conditions that affect species habitat [8,13].
Additionally, species abundance models (SAMs) can provide critical information for species
monitoring and conservation management. However, these models have received less
attention from the scientific community, possibly due to difficulties in obtaining abundance
data related to sampling protocols’ costs and specificity [14]. In general, species occurrence
data are more accessible than population abundance data because they only require record-
ing the presence or evidence of at least one individual rather than estimates of the absolute
or relative number of individuals [15]. However, SAMs have the advantage of being much
more informative and capable of providing relevant information on the distribution of
species and the size of populations, which can reflect the role of essential demographic and
environmental factors [15–17].

A major challenge in developing SDMs and SAMs relates to the choice of environmen-
tal variables. Predictor variables should match the spatial resolution of the species data to
capture habitat characteristics at finer scales, thus including a wider range of information
that is ecologically relevant for the species [12,18,19]. Environmental predictor variables
derived from remote sensing data are commonly used to model species distributions. How-
ever, satellite images have been used mainly in conservation biology to classify, describe,
and map vegetation and habitats’ structure [20]. A recent review points out that SDMs and
SAMs have suffered from the lack of spatially explicit predictor variables capturing the
species’ habitats dynamics throughout their annual life cycle [21]. Nevertheless, emerging
remote sensing technologies face these challenges and contribute to a new generation of
distribution and abundance models [13,17]. New satellite products can improve SDMs’
and SAMs’ performance by providing essential information to predict species ranges.

An example of such satellite products is the ecosystem functioning attributes (EFAs),
which are biophysical descriptors of ecosystem functioning that describe exchanges of
matter and energy between the biota and the environment [12,22]. EFAs are calculated from
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satellite recorded time series and offer a more integrated and faster assessment of ecosystem
responses to environmental factors and changes than macroclimatic databases or structural
attributes (e.g., vegetation height and density, landscape composition, or spatial configura-
tion) [23]. Additionally, since EFAs are remotely detected in a standardized and synoptical
fashion, species habitats’ spatial and temporal (seasonal and interannual) variability can
be easily included in SAM or SDM workflows [22]. Despite these advances, they are still
relatively unexplored for these purposes [13,24]. The possibility of including predictors of
the seasonal and interannual habitat dynamics in SAMs can be an opportunity for studying
migratory species whose annual life cycle develops in different areas of the globe with
specific phenological events marking their departure, arrival, or permanence periods.

The Woodcock (Scolopax rusticola) is a migrant wader (Charadriiformes), distinguished
from other scolopacids by its association with forest areas [25,26]. Environmental condi-
tions influence the Woodcock’s behavior, especially in the non-reproductive period (i.e.,
wintering period), when the distribution and abundance of its populations seem to be
particularly affected by temperature and rainfall [27–29]. The Woodcock is sensitive to
the thermal regime [27,29,30] and seasonal variations in soil moisture [31,32], as well as
habitat features related to vegetation cover [33–35]. Landscape and forest habitats’ hetero-
geneity can significantly affect Woodcock abundance since habitat requirements appear
to vary with different stages of its annual life cycle [35]. The Woodcock’s distribution is
also strongly conditioned by food availability [31,36]. It has a diet specialized in soil micro-
fauna: arthropods, annelids (mainly worms), and slugs [36]. Low temperatures decrease
its capacity to regulate body temperature and affect food accessibility since frozen water
makes it harder to penetrate deeper into the soil to access the worms [37]. Under these
conditions, the Woodcock shows a more irregular distribution and variable density, with
stochastic events shaping its population dynamics [27]. When rainfall is strong, and the
temperature is mild, food is more abundant, and the Woodcock distributes more evenly in
relatively low densities.

The Woodcock is a species with great game interest in Europe, where it is estimated
that 3 to 4 million individuals are hunted annually [38]. There, Woodcock hunter asso-
ciations from different European countries seek to involve their affiliates in managing
and conserving the species, encouraging them to collect data from their activity. Thus,
a large volume of long-term data has been collected during the hunting season across
Europe. This citizen science data source offers an excellent opportunity to study the factors
affecting the Woodcock’s distribution and abundance during the winter season across a
wide geographic area. As referred by Runge et al. [39], management and conservation
actions for migratory birds need to be coordinated across different regions, habitat types,
seasons, and jurisdictions. Additionally, there is an increasing consensus on the need for
sustainable hunting, which depends on a deeper understanding of the factors driving the
game species’ interannual population fluctuations [40].

The present study aims to understand better how ecosystem functioning influences
the population abundance of migratory birds throughout the non-breeding season. To do
so, we focused on the Woodcock population across southwestern Europe (Portugal, Spain,
and France) during the autumn and winter seasons (migrating and wintering birds), using
hunting data.

We hypothesized that remotely sensed variables depicting several dimensions of
ecosystem functioning (i.e., EFAs expressing vegetation and edaphoclimatic conditions)
and their seasonal dynamics could explain the spatiotemporal variation of the Woodcock’s
abundance. In particular, we took advantage of a long-term time series obtained from
citizen science (N = 355,654 hunting trips) gathered between 2009 and 2018. We computed
a comprehensive set of zonal statistical parameters for three EFAs, for 8-day periods, from
MODIS satellite products: enhanced vegetation index (EVI), tasseled cap transformation
(TCT), and land surface temperature (LST). Finally, we analyzed to what extent these
remotely sensed indicators of primary productivity, water, and energy balance predict
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the Woodcock’s abundance and whether this effect varies between autumn migration and
wintering seasons.

2. Materials and Methods
2.1. The Woodcock

The Woodcock has a wide distribution in the Palearctic region (Figure 1) [25,38]. It is
essentially a migrant, except for some resident or short-distance migrant populations, in
the archipelagos of the Canaries, Madeira, and the Azores, and in some maritime countries
in southwest Europe and the British Isles [41,42]. In the Western Palearctic, it reproduces
mainly in central, northern, and eastern Europe and Russia, and winters in central and
southeast Europe, particularly in France and the Iberian Peninsula [25,43].
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Figure 1. Woodcock (Scolopax rusticola) distribution and study area. Distribution: map adapted
from [44]; study area (Portugal, Spain, and France) delimited by the black line. In each country, the
respective regions of the Nomenclature of Territorial Units for Statistics of level 3 of 2016, NUTS-III
(data adapted from [45] are delimited) and spatial variation (by NUTS-III) of the number of Woodcock
hunting trips analyzed, carried out by hunters (during the respective hunting seasons, between
2009 and 2018), are represented in five classes by the number quantiles of journeys, i.e., each class
represents 20% of the total number of observations. NUTS-III white color—no data.

During the breeding season, the Woodcock selects habitat mosaics with specific char-
acteristics such as deciduous forest habitats [46,47], mixed forest, or conifers [25,48,49].
During the wintering period, it shows less specific habitat requirements, selecting differ-
ent habitats such as hedged forests during the day, for refuge, and meadows at night, for
feeding [25,31,50], where it can find high invertebrate biomass, particularly annelids [26,51].

The current Woodcock breeding population in the Western Palearctic is estimated
to be between 10 and 26 million individuals, most of which spend the winter in western
and southern Europe and northern Africa [52,53]. However, these estimates are mainly
supported by specialists’ opinions and not on objective data collected in the field [54].
The Woodcock is a solitary, elusive, and cryptic species, limiting classic survey techniques
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usually applied to assess bird abundance [34,35,55,56]. Thus, citizen science data obtained
from hunting activity offer an important opportunity to study this species.

The Woodcock appears in Part A of Annex II and Part B of Annex III of the “Birds
Directive”, which means it can be hunted in the geographical area where the directive is
applicable. However, the effects of hunting on their populations are still poorly assessed,
with evidence of an additive effect on mortality and causing the use of more extensive
areas during the day [33,57]. In addition to hunting, land-use changes may also cause some
disturbance in the Woodcock’s annual life cycle. Although there are some studies about its
ecology, these are mainly concentrated in the breeding period and/or in restricted areas
of its distribution, such as those carried out using ringing data [28], stable isotopes [43],
and telemetry [49,58].

Its current global conservation status is evaluated as Least Concern; the only available
regional trend assessment concerns Europe, where the population seems to be stable [59].

2.2. Study Area and Hunting Data

The study area covers central and southwestern Europe (France, Spain, and Portugal),
which represents one of the main wintering areas for Woodcock [25,43] (see Figure 1).
Due to the long hunting traditions, population monitoring programs were developed to
support a more sustainable hunting activity in these countries. In Europe, Woodcock hunter
associations from different countries are gathered in the Federation of Western Palearc-
tic Woodcock Hunter Association (Féderation des Associations Nationales des Bécassiers du
Palearctique Occidental (FANBPO)), which facilitates their cooperation and communication.

We analyzed data collected between 2009 and 2018 by Woodcock hunters, members of
the Club National des Bécassiers, the Club de Cazadores de Becada, and the Associação Nacional
de Caçadores de Galinholas, during Woodcock hunting trips in mainland France, Spain,
and Portugal, respectively (Figure 1). Woodcock hunting seasons occur from September
to February of the following year, with differences in the beginning date between these
countries (France: 14 September; Spain: 8 October; Portugal: 1 November), and in the
number of hunting days and bag limits. Only data collected from hunting with pointing
dogs were considered in the analyses. Hunters registered the date, location, duration, and
number of Woodcocks seen for each hunting trip.

A total of 355,654 hunting trip records were analyzed: 326,519 (~92%) from France,
25,746 (~7%) from Spain, and 3389 (~1%) from Portugal (Figure 1), totaling 536,873 contacts
with Woodcock during 1,154,222 h of hunting. We estimated a relative abundance index
corresponding to the number of different Woodcock observed per hour in each hunting
trip (ICA or ICA1 [60–62]). This abundance index is strongly related to another relative
abundance index obtained from night ringing sessions (IAN or NIA) and is considered a
good indicator to evaluate winter abundance variation [60–62].

Since the location of the hunting trips was provided with variable detail among the
three countries, the relative abundance index values were aggregated at level 3 of NUTS
classification (NUTS-III), which corresponds to departments in France, provinces in Spain,
and intermunicipal entities in Portugal. The average area (±standard deviation) of these
units is 6320.4 ± 8054.7 km2, 8576 ± 5698.6 km2, and 3676 ± 2020.7 km2, for France (n = 88),
Spain (n = 41), and Portugal (n = 23), respectively.

2.3. Remote Sensed Ecosystem Functioning Variables

To evaluate how ecosystem functioning influences the Woodcock’s relative abundance,
we computed a comprehensive set of zonal statistical parameters for three ecosystem
functioning attributes from MODIS satellite data products: enhanced vegetation index (EVI),
tasseled cap transformation (TCT), and land surface temperature (LST) [63,64] (Table 1). These
variables are suited to characterizing ecosystem functioning in a repeatable, continuous, and
standardized way, being related to primary productivity, water, and energy balance [12,17,22].
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Table 1. List of variables estimated from the Terra/MODIS satellite imaging products. For the list of
acronyms of the remote sensed ecosystem functioning variables, see Table A3.

Components of Ecosystem
Functioning

Ecosystem Functioning
Attributes—EFAs

MODIS Product(s)/Pixel Size and Time
Frequency

Zonal Statistical Parameters
(NUTS-III)

Carbon cycle (primary
productivity) EVI—Enhanced vegetation index MOD09A1 (v006)—Surface reflectance

500 m
(8-day composite) Minimum (min.)

Average (avg.)
Maximum (max.)

Range (range )

Water cycle (water in
soil/vegetation)

TCTwet—Tasseled cap
transformation—water component

Energy balance LST—Land surface temperature

MOD11A2 (v006)—Surface temperature and
emissivity

1000 m
(8-day composite)

EVI (1) is an optimized vegetation index with improved sensitivity in high biomass
regions and can reduce atmospheric contamination [65]. The EVI was calculated using
the blue, red, and near-infrared (NIR) bands with the following parameters: L = 1, C1 = 6,
C2 = 7.5, and G (gain factor) = 2.5.

G × (NIR − RED)

(NIR + C1 × RED − C2 × Blue + L)
(1)

EVI value can vary between −1 and 1, with the lowest values being associated with
artificial cover types and the highest values, closer to one, are related to higher levels
of biomass, vegetation cover, leaf area index, or photosynthetic activity. The EVI was
obtained from the MODIS MOD13Q1 product with 250 m spatial resolution and 8-day
temporal resolution.

TCT allows, similarly to principal component analysis, performance of a linear trans-
formation to satellite spectral data to highlight specific aspects of the land surface. These
components are related to “brightness” (which approximately translates to the albedo
coefficient), “greenness” (as a proxy of vegetation biomass), or the “wetness” component
(as a proxy of water content in the soil and vegetation). The coefficients used in the trans-
formation to the wetness component were derived from Zhang et al. [66] (Table A1). The
TCTwet index (i.e., TCT transformation for the wetness component) value can vary between
−1 and 1 and indicates, in a relative way, the amount of water in the soil or vegetation,
being able to, under continuous observation, show the availability and water balance in
a given region. TCTwet was calculated from the MODIS MOD09A1 product with 500 m
spatial resolution and 8-day temporal resolution.

To calculate LST from the MODIS product MOD11A2 (with 1 km spatial resolution
and 8-day temporal resolution), a multiplicative conversion factor of 0.02 (units in Kelvin)
was applied.

Using metadata of MODIS images, the pixels marked as clouds were removed to
avoid spurious values. The data collection was carried out through original images for each
variable (Table 1) and by applying zonal statistics (i.e., aggregating all the pixels included in
a given area) for each NUTS-III region (see the available list in Table A2 in the Appendix A).
Given the large size of the spatial units (NUTS-III), in addition to the average value for each
unit, we also computed the minimum and the maximum value (Table 1) to characterize
the extreme conditions at the NUTS level. We also calculated each variable’s range to
characterize the spatial heterogeneity inside each NUTS-III region (the larger the range, the
greater the heterogeneity within the NUTS-III region). Thus, four zonal statistic measures
were used to characterize the data distribution at the NUTS level: minimum, average,
maximum, and range. These values were estimated for 8-day periods from daily images
extracted between September and February of the following year, covering the annual
hunting seasons from 2009 (September) to 2018 (February). The EVI values at the NUTS-III
level changes with the latitude and 8-day period. All image reprocessing and calculation
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processes were performed in the Google Earth Engine cloud-based platform [67]. We used
“dplyr” and “tidyr” R packages [68,69] for data management and preprocessing.

2.4. Variable Selection and Ranking

The data on the relative abundance of Woodcock were grouped by week to match as
close as possible with the time scale of the available remote sensing data (Figure 2). Both
data types were divided into two periods, corresponding to two phases of the species’
annual life cycle, following [54,70]:
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Figure 2. Variation over each hunting season (2009/2010 to 2017/2018) of the values (mean and
respective 95% confidence interval—shaded) of the relative abundance of Woodcock, EVI—enhanced
vegetation index, TCTwet—tasseled cap transformation—water component, and LST—land surface
temperature. The numbering of weeks corresponds to that used in the civil calendar; week “00”
corresponds to the week that includes December and January days. The red dashed line indicates the
separation between the periods of autumn migration (left) and wintering (right).

1. Autumnal migration, from early September (first week of the month, week 35) to
mid-December (second week of the month, week 50).

2. Wintering season, from mid-December (week 51) to late February (week 9).
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All remote sensing variables were standardized (2), considering the respective mean and
standard deviation values using the “scale” function available in the “arm” R package [71].

x − mean (x)
standard deviation (x)

(2)

To avoid multicollinearity problems, we calculated Pearson’s correlation coefficient
between each pair of variables (see the list and respective acronyms in Table A3). The
correlations were represented graphically (Figure A1). The variance inflation factor (VIF)
was also calculated with the “usdm” R package [72] to estimate how much a regression co-
efficient’s variance is inflated by multicollinearity. The variables with Pearson’s correlation
coefficient (with absolute value) greater than 0.7 and a VIF value greater than three were
excluded from further analyses [73,74].

To explore the effects of remotely sensed ecosystem functioning variables (fixed fac-
tors) on the spatiotemporal variation of the Woodcock’s relative abundance (dependent
variable), mixed generalized linear models (GLMMs) were developed separately for the
migration and wintering period. To avoid outliers that could affect model inference, we
removed abundance values greater than the interquartile distance multiplied by 1.5 [75,76].
The “country” and the “week” nested with the annual “hunting season” were considered
as random effects to account for repeated measurements within and across units of time
(“week”) and space (“countries”). Each country has a hunting period due to climatic
and hunting legal specificities, so a “country” level effect must be accounted for. The
“week” was also included as a random effect nested with the annual “hunting season”
because abundance data have been collected every week of the migratory and wintering
season over the years. Since the response variable (i.e., the relative abundance index) is
a continuous variable, our models were fitted assuming a normal distribution and using
the “link” identity function. Previous analyses with Poisson and negative binomial error
distributions and zero-inflated models were finally ruled out due to their lower explanatory
power (conditional R2 value ranged between 0.07 and 0.12, and marginal R2 between 0.04
and 0.07). The analyses were performed with the “glmmTMB” R package [77]. Model
performance was assessed using the “check_model” function, available in the “perfor-
mance” R package [78]. This complementary analysis confirms various model assumptions:
normality of residuals, normality of random effects, heteroscedasticity, homogeneity of
variance, and multicollinearity (see Figures A2 and A3 in the Appendix A).

In addition, a multi-model inference approach was performed for both migratory
and wintering seasons, running models from all possible combinations of environmental
variables (predictors) to verify the importance of each one of them through the “dredge”
function of the “MuMIn” R package [79]. Finally, only those models with a delta Akaike
information criterion (AIC) value of less than four were considered relevant [80]. The
variables were considered significant for p-values < 0.05. Šidák’s correction [81] was
computed to adjust p-values for multiple comparisons.

Data graphs were created with the “ggplot2” [82], “ggpmisc” [83], and “cowplot” [84]
R packages.

3. Results
3.1. Patterns of Spatiotemporal Variation in Woodcock Abundance

Our results confirm the expected variation in the Woodcock’s relative abundance over
the hunting season (Figure 3). The relative abundance index initially increases over the
migration period until reaching a maximum peak, followed by a relatively stable phase
that coincides with the wintering season. There is a slight time lag in this pattern between
countries; initially, the abundance increases in France, Spain, and Portugal. Regarding
the spatial variation of Woodcock abundance, the species is more abundant in the north
of France, the southwest of Spain, and in the center and the south of Portugal, for both
wintering and migration periods (Figure 4). Some sampling units have no abundance data
available, particularly in southern Spain and northeastern France.



Remote Sens. 2022, 14, 463 9 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 3. Variation in the relative abundance (average and respective 95% confidence interval—
shaded) of Woodcock throughout the hunting season (September to February) for each country, 
considering the aggregate set of hunting seasons (2009/2010 to 2017/2018). The red dashed line in-
dicates the separation between the periods of autumn migration (left) and wintering (right). 

 

Figure 4. Spatial variation in the relative abundance index (for each NUTS-III the average value for 
each week was estimated and, subsequently, the average value for the set of weeks for each period), 
considering the aggregate set of hunting seasons (2009/2010 to 2017/2018). Representation with 6 
classes, resulting from the application of Jenks’ algorithm [85]. NUTS-III white color—no data. 

Figure 3. Variation in the relative abundance (average and respective 95% confidence interval—shaded)
of Woodcock throughout the hunting season (September to February) for each country, considering the
aggregate set of hunting seasons (2009/2010 to 2017/2018). The red dashed line indicates the separation
between the periods of autumn migration (left) and wintering (right).

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 3. Variation in the relative abundance (average and respective 95% confidence interval—
shaded) of Woodcock throughout the hunting season (September to February) for each country, 
considering the aggregate set of hunting seasons (2009/2010 to 2017/2018). The red dashed line in-
dicates the separation between the periods of autumn migration (left) and wintering (right). 

 

Figure 4. Spatial variation in the relative abundance index (for each NUTS-III the average value for 
each week was estimated and, subsequently, the average value for the set of weeks for each period), 
considering the aggregate set of hunting seasons (2009/2010 to 2017/2018). Representation with 6 
classes, resulting from the application of Jenks’ algorithm [85]. NUTS-III white color—no data. 

Figure 4. Spatial variation in the relative abundance index (for each NUTS-III the average value for
each week was estimated and, subsequently, the average value for the set of weeks for each period),
considering the aggregate set of hunting seasons (2009/2010 to 2017/2018). Representation with
6 classes, resulting from the application of Jenks’ algorithm [85]. NUTS-III white color—no data.
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3.2. Predictors of Spatiotemporal Variation in Woodcock Abundance
3.2.1. Autumnal Migration

The GLMM fitted for the autumn migration period, including all environmental
variables, presented a moderate explanatory ability, with a conditional R2 value of 0.33
and a marginal R2 value of 0.09. Six of the seven variables considered for analysis had a
significant effect (Table 2). Those with the most significant effect were the medium LST
(Z = −13.766; p < 0.001) and the maximum EVI (Z = −10.512; p < 0.001), both with a negative
effect on species abundance (Table 2). The EVI amplitude and medium value (Z = 9.541;
p < 0.001; Z = 8.982; p < 0.001) also stand out, having a positive effect on abundance. The
medium value of the TCTwet component also had a significant and negative effect on the
abundance of the species (Z = −8.220; p < 0.001) and the maximum LST had a positive effect
(Z = 4.659; p < 0.001). All these significant variables are present in all models considered
relevant in AIC multimodel inference (i.e., delta AIC < 4; Table 2). LST amplitude was the
only descriptor of ecosystem functioning that was not significant (p = 0.225; Table 2).

Table 2. Generalized linear mixed model (GLMM) results for the autumn migration and wintering
periods. Estimate of regression coefficients results from an averaged model obtained from those with
delta AIC < 4. The importance of each ecosystem functioning variable (last column) is represented
by the number of times that each variable appears contained in the explanatory models (delta
AIC < 4). EFAs: EVI—enhanced vegetation index; TCTwet—tasseled cap transformation—water
component; LST— land surface temperature; respective maximum (max), minimum (min), average
(avg), and range (range) values. Šidák’s correction [81] was computed to adjust p-values for multiple
comparisons. Significant results, at p < 0.05, are shown in bold and underlined if significant after
correction for seven comparisons.

Autumn Migration Wintering

Variable
Estimate Error Z Value

Probability
(>|z|)

Number of
Models

Contained
Estimate Error Z Value

Probability
(>|z|)

Number of
Models

Contained
evi_range 0.072 0.008 9.541 <0.001 2 0.069 0.009 7.723 <0.001 4
evi_max −0.104 0.010 −10.512 <0.001 2 −0.107 0.010 −10.774 <0.001 4
evi_avg 0.073 0.008 8.982 <0.001 2 0.128 0.011 11.692 <0.001 4

lst_range −0.010 0.008 −1.138 0.255 1 0.014 0.001 1.350 0.177 2
lst_max 0.044 0.009 4.659 <0.001 2 0.056 0.011 5.130 <0.001 4
lst_avg −0.209 0.015 −13.766 <0.001 2 −0.095 0.018 −5.277 <0.001 4

wetness_avg −0.080 0.010 −8.220 <0.001 2 −0.021 0.010 −2.129 0.0333 2

3.2.2. Wintering

The GLMM built for the wintering period, including all environmental variables,
also presented a moderate explanatory capacity, with a conditional R2 value of 0.16 and
a marginal R2 value of 0.09. Five of the seven variables considered for analysis had a
significant effect (Table 2). Those with the most significant effect were the average EVI
(Z = 11.692; p < 0.001) and the maximum EVI (Z = −10.774; p < 0.001), the first with a
positive effect and the second with a negative effect on the species abundance (Table 2). EVI
amplitude (Z = 7.723; p < 0.001) showed a positive effect, while the average and maximum
value of the LST (Z = −5.277; p < 0.001; Z = 5.130; p < 0.001, respectively) had for the
first a negative effect and the second a positive effect. The maximum LST component
positively affected the species relative abundance (Z = 5.130; p < 0.001). These variables are
shown in all the models considered, supported by AIC-based multimodel inference (delta
AIC < 4; Table 2). The average value of the TCTwet component (Z = −2.129; p = 0.333) and
the amplitude of LST (Z = 1.350; p = 0.177; Table 2) are the only descriptors of ecosystem
functioning that were not significant after adjustment for multiple comparisons.

4. Discussion
4.1. Ecosystem Functioning Attributes and Woodcock Abundance

Our results confirm that remotely sensed habitat descriptors (namely EFAs and their
seasonal dynamics) have a significant explicative ability for the spatiotemporal patterns
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of abundance of migratory birds. In the autumn migration period, the maximum EVI
and average LST (descriptors of primary productivity and energy balance, respectively)
correlated significantly and negatively with Woodcock abundance. The maximum EVI
stands out in the wintering period and the average EVI has a positive effect. Additionally,
significantly correlated, in both periods, are the EVI amplitude values.

The highest maximum EVI values signal those areas with the highest primary pro-
ductivity [65], such as forest areas with dense vegetation. These characteristics seem to
be associated with the Woodcock’s lower abundance in the two studied periods (Table 2).
This result is consistent with previous knowledge about the species’ habitat requirements
indicating a preference for mixed areas of forests and hedges during the day and fields and
meadows at night, rather than areas of homogeneous and dense forest [31,33,49]. On the
other hand, higher EVI amplitude values indicate a greater heterogeneity in the vegetation
cover. This situation will benefit the Woodcock, which, in these periods of its annual life
cycle, needs open areas for night feeding (i.e., pastures, natural or artificial meadows,
agricultural fields) and forest and bush areas for shelter during the day [31,33,49]. Our
results are aligned with recent studies that support a relationship between primary produc-
tivity and the migration of long-distance migratory birds, pointing out that their migratory
movement is influenced by seasonal changes in the landscape’s resource availability [86].

The maximum value of land surface temperature (LST) showed a significant and
positive correlation with abundance but was slightly higher in the wintering period (Table 2).
The average value of LST is negatively related to Woodcock abundance. This effect may
indicate that the maximum temperature at the surface (reached during the day) is important.
These low temperatures imply a greater difficulty for birds regarding body temperature
regulation with subsequent increases in energy requirements and, therefore, food intake [30].
Péron et al. [37] demonstrated that Woodcock make great movements in winter conditioned
by the air temperature. On the other hand, it is also known that the low temperatures
reached during the wintering period hamper accessibility to their primary food source,
earthworms, obtained by probing the soil [37]. Thus, the maximum value of the temperature
at the surface, reached during the daytime, can allow favorable conditions for accessing
food, at least in a certain period of the day. Finally, LST amplitude does not seem to influence
Woodcock abundance in both periods significantly. Our results reinforce the interest in
satellite products of surface temperature, more related to the conditions experienced by
individuals on the ground in critical periods of their life cycle [87].

The average value of the TCT wetness component (TCwet; a descriptor of the water
cycle in the soil/vegetation) made a significant contribution, negatively affecting the species’
abundance in the migration period (Table 2). This result may indicate that this species
avoids areas with high levels of waterlogging (flooding), detrimental to obtaining food. The
Woodcock, unlike other waders highly dependent on water dynamics such as the Common
Snipe (Gallinago gallinago) [88], is not frequently seen in habitats with these characteristics,
such as peat bogs and swamps [25].

4.2. Advantages, Limitations, and Future Perspectives

Currently, most studies indicate that habitat loss and degradation (such as the degrada-
tion and fragmentation of forest mosaics or the intensification of agricultural practices) and
climate change are significant threats to species and ecosystems [89,90]. For birds, climate
change influences their phenology, population dynamics, abundance, and distribution [91–93].

However, although these changes affect bird communities, it is unclear which factors
are most prevalent in each case and which pathways. Different factors are challenging
to analyze independently. Ecosystem functioning attributes (EFAs) are multipurpose de-
scriptors that offer a more integrative and rapid assessment of responses to environmental
changes. Our results allow us to verify that the abundance of Woodcock in autumn migra-
tion and winter periods is affected by several dimensions linked to primary productivity
dynamics, the water cycle (water in the soil and vegetation), and ecosystems’ energy bal-
ance. These results are consistent with those obtained in previous studies, highlighting the
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validity of these remotely sensed indicators for species distribution and abundance assess-
ments [12,17,22,23,88,94,95]. Several studies have already demonstrated the advantages of
using models calibrated with functional variables over those based on models calibrated
with exclusively climatic variables since the former allowed for capture of the joint effect of
changes in climate and land cover/use on the availability of habitat for a broad group of
threatened species [22,95]. Other studies about the variation in threatened plant species
abundance and various bird species (especially for migrant, forest specialist species) also
confirmed a greater predictive power of models calibrated with functional variables related
to productivity and energy balance compared to models based on macroclimatic data or
landscape composition variables [17,95].

Migratory bird species, especially those considered for hunting, such as the Woodcock,
represent a greater challenge for management and conservation policies. It is vital to
consider territorial continuity (beyond administrative countries’ boundaries) to analyze
which factors affect species and an adequate definition of population management goals. In
this sense, our study considered a broader and more representative area of the distribution
in autumn migration and wintering of Woodcock than previous studies (e.g., [31,96]).

The use of data collected from hunting activity to study game species’ population
dynamics is often hampered by the temporal (between hunting seasons) and the spatial
variation in their quantity and quality [96–99]. The data collected often do not include
metadata that allow quantifying the hunting effort (e.g., time dedicated to hunting on each
journey or the area covered). Our relative abundance index considers an effort variable
(sampling effort, i.e., the time spent hunting). In addition, it reports the number of birds
seen and not the number of birds hunted, which reduces the influence of certain factors
such as legal limitations due to the catch limits in each country. Thus, previous works have
recognized this index as a useful tool [60–62].

On the other hand, hunting data present some limitations that must be considered.
NUTS-III regions were chosen due to the location of the hunting trips that were provided
with variable detail among the three countries. The large size of the NUTS-III regions
leads to high environmental heterogeneity within and among them. Being aware of this
limitation, we think that this dataset still provides vital information since it consists of more
than 350,000 records, collected over a long time interval (nine hunting seasons) and a large
geographical extent.

Still, the spatial resolution used for analyses prevents a more refined characterization
of the species habitat and its ecological requirements, partly explaining the low values
of marginal R2. An increase in the spatial resolution at which the abundance data are
collected will improve future studies since alternative satellites such as Landsat or Sentinel
(e.g., [100]) would allow calculating EFAs at a finer spatial resolution (up to 30 m and 10 m,
respectively) although with less temporal resolution than MODIS. In addition, the appli-
cation of predictive modeling techniques based on artificial intelligence such as machine
learning algorithms (e.g., random forest or artificial neural networks) can also improve our
ability to predict the species’ abundance from space.

4.3. Final Considerations

The European Union (EU) seeks to curb biodiversity loss, a task that needs updated
knowledge of the general conservation status of species (including wild birds) and habitats
of community interest under the 1992 “Habitats Directive” (92/43/EEC) and the 1979
“Birds Directive” (2009/147/EC). However, the information on birds is still considered
insufficient, as is the case in Iberian territory [10].

The present work used a new explanatory analysis for assessing the variation of
Woodcock abundance in autumn and winter at large spatial and temporal scales, based on
ecosystem functioning attributes obtained by Earth observation satellites. Additionally, it
demonstrates the importance of citizen science programs in collecting data essential for
monitoring biodiversity.
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The approach developed can be applied to other taxa since it establishes strong
relationships between the species abundance and essential ecosystem functions and vital
ecological processes closely related to the water and carbon cycles and the energy balance.
Considering the increasing availability of remote sensing products, these data provide
a promising opportunity for integrating ecosystem dynamics into habitat monitoring to
support management and species conservation policies. This is especially relevant given the
current context of global environmental changes and the new environmental, agricultural,
and nature restoration policies to be implemented in Europe in the coming decades in areas
critically important for Woodcock.
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Appendix A

Table A1. Coefficients used in the tasseled cap transformation (TCT) of MODIS NBAR products
(derived from [66]). In bold, the TCT Wetness (TCTwet) component used for the analyses.

Band Red Near-IR Blue Green M-IR M-IR M-IR
MODIS band

wavelength (nm) 620–670 841–876 459–479 545–565 1230–1250 1628–1652 2105–2155

Brightness 0.3956 0.4718 0.3354 0.3834 0.3946 0.3434 0.2964
Greenness −0.3399 0.5952 −0.2129 −0.2222 0.4617 −0.1037 −0.4600
Wetness 0.1084 0.0912 0.5065 0.4040 −0.2410 −0.4658 −0.5306
Fourth 0.4527 0.4480 −0.3869 −0.1277 −0.3164 −0.4993 0.2829
Fifth 0.6478 −0.2448 −0.3705 0.0068 0.1385 0.2564 −0.5461
Sixth −0.2332 0.3348 −0.2764 0.3516 −0.5986 0.5032 −0.1515

Seventh −0.1930 −0.2052 −0.4725 0.7049 0.3107 −0.2935 0.1334
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Table A2. List of NUTS-III and the respective number of journeys.

Country NUTS-III Designation N◦ of Journeys
Portugal PT111 Alto Minho 1342
Portugal PT112 Cávado 63
Portugal PT119 Ave 39
Portugal PT11A Área Metropolitana do Porto 20
Portugal PT11B Alto Tâmega 319
Portugal PT11C Tâmega e Sousa 10
Portugal PT11D Douro 71
Portugal PT11E Terras de Trás-os-Montes 11
Portugal PT150 Algarve 10
Portugal PT16B Oeste 61
Portugal PT16D Região de Aveiro 82
Portugal PT16E Região de Coimbra 119
Portugal PT16F Região de Leiria 72
Portugal PT16G Viseu Dão-Lafões 32
Portugal PT16H Beira Baixa 17
Portugal PT16I Médio Tejo 201
Portugal PT16J Beiras e Serra da Estrela 15
Portugal PT170 Área Metropolitana de Lisboa 53
Portugal PT181 Alentejo Litoral 67
Portugal PT184 Baixo Alentejo 45
Portugal PT185 Lezíria do Tejo 51
Portugal PT186 Alto Alentejo 115
Portugal PT187 Alentejo Central 574

Spain ES111 A Coruña 320
Spain ES112 Lugo 551
Spain ES113 Ourense 11
Spain ES114 Pontevedra 430
Spain ES120 Asturias 1082
Spain ES130 Cantabria 4065
Spain ES211 Álava/Araba 2337
Spain ES212 Guipúzcoa/Gipuzkoa 814
Spain ES213 Vizcaya/Bizkaia 1228
Spain ES220 Navarre 2786
Spain ES230 La Rioja 23
Spain ES241 Huesca 392
Spain ES242 Teruel 173
Spain ES243 Zaragoza 264
Spain ES300 Madrid 101
Spain ES411 Ávila 20
Spain ES412 Burgos 2543
Spain ES413 León 983
Spain ES414 Palencia 859
Spain ES415 Salamanca 295
Spain ES416 Segovia 26
Spain ES417 Soria 428
Spain ES418 Valladolid 101
Spain ES419 Zamora 91
Spain ES423 Cuenca 1
Spain ES424 Guadalajara 65
Spain ES425 Toledo 21
Spain ES431 Badajoz 2
Spain ES432 Cáceres 11
Spain ES511 Barcelona 2782
Spain ES512 Girona 2099
Spain ES513 Lleida 289
Spain ES514 Tarragona 82
Spain ES521 Alicante 63
Spain ES522 Castellón/Castelló 93
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Table A2. Cont.

Country NUTS-III Designation N◦ of Journeys
Spain ES612 Cádiz 20
Spain ES614 Granada 1
Spain ES615 Huelva 61
Spain ES616 Jaén 1
Spain ES617 Málaga 159
Spain ES620 Murcia 73
France FR102 Seine-et-Marne 66
France FR103 Yvelines 23
France FR104 Essonne 79
France FR108 Val-d’Oise 10
France FRB01 Cher 1641
France FRB02 Eure-et-Loir 596
France FRB03 Indre 1913
France FRB04 Indre-et-Loire 2213
France FRB05 Loir-et-Cher 437
France FRB06 Loiret 435
France FRC11 Côte-d’Or 1512
France FRC12 Nièvre 1592
France FRC13 Saône-et-Loire 1608
France FRC14 Yonne 553
France FRC21 Doubs 3514
France FRC22 Jura 5954
France FRC23 Haute-Saône 3437
France FRC24 Territoire de Belfort 139
France FRD11 Calvados 700
France FRD12 Manche 3203
France FRD13 Orne 703
France FRD21 Eure 403
France FRD22 Seine-Maritime 248
France FRE11 Nord 90
France FRE12 Pas-de-Calais 1361
France FRE21 Aisne 350
France FRE22 Oise 478
France FRE23 Somme 377
France FRF12 Haut-Rhin 2
France FRF21 Ardennes 174
France FRF22 Aube 158
France FRF23 Marne 25
France FRF24 Haute-Marne 675
France FRF31 Meurthe-et-Moselle 4
France FRF33 Moselle 25
France FRF34 Vosges 6
France FRG01 Loire-Atlantique 1116
France FRG02 Maine-et-Loire 3148
France FRG03 Mayenne 745
France FRG04 Sarthe 1156
France FRG05 Vendée 2640
France FRH01 Côtes-d’Armor 6553
France FRH02 Finistère 5842
France FRH03 Ille-et-Vilaine 1421
France FRH04 Morbihan 5698
France FRI11 Dordogne 13,413
France FRI12 Gironde 15,319
France FRI13 Landes 19,028
France FRI14 Lot-et-Garonne 3640
France FRI15 Pyrénées-Atlantiques 11,162
France FRI21 Corrèze 9949
France FRI22 Creuse 5263
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Table A2. Cont.

Country NUTS-III Designation N◦ of Journeys
France FRI23 Haute-Vienne 7420
France FRI31 Charente 6615
France FRI32 Charente-Maritime 18,732
France FRI33 Deux-Sèvres 1687
France FRI34 Vienne 4161
France FRJ11 Aude 2166
France FRJ12 Gard 12,795
France FRJ13 Hérault 10,565
France FRJ14 Lozère 4667
France FRJ15 Pyrénées-Orientales 2030
France FRJ21 Ariège 3181
France FRJ22 Aveyron 3804
France FRJ23 Haute-Garonne 2385
France FRJ24 Gers 5468
France FRJ25 Lot 8634
France FRJ26 Hautes-Pyrénées 3786
France FRJ27 Tarn 4454
France FRJ28 Tarn-et-Garonne 5205
France FRK11 Allier 1424
France FRK12 Cantal 1923
France FRK13 Haute-Loire 5946
France FRK14 Puy-de-Dôme 5035
France FRK21 Ain 2024
France FRK22 Ardèche 6359
France FRK23 Drôme 13,397
France FRK24 Isère 8457
France FRK25 Loire 2115
France FRK26 Rhône 562
France FRK27 Savoie 3556
France FRK28 Haute-Savoie 1595
France FRL01 Alpes-de-Haute-Provence 6768
France FRL02 Hautes-Alpes 556
France FRL03 Alpes-Maritimes 3906
France FRL04 Bouches-du-Rhône 4159
France FRL05 Var 7229
France FRL06 Vaucluse 2956

Table A3. Acronyms of the remote sensed ecosystem functioning variables (defined in Table 1),
by statistical measure. (*) indicates the variables used in the models after the correlation analysis.

Statistical Parameter Index Name Code

Minimum
EVI evi_min

TCTwet wetness_min
LST lst_min

Average
EVI evi_avg *

TCTwet wetness_avg *
LST lst_avg *

Maximum
EVI evi_max *

TCTwet wetness_max
LST lst_max *

Range
EVI evi_range *

TCTwet wetness_range
LST lst_range *
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Figure A1. Heat map of Pearson’s correlation coefficient between the environmental variables ini-
tially considered (EVI—enhanced vegetation index; TCTwet—tasseled cap transformation (TCT)—
water component; LST—surface temperature), taking into account the respective maximum values 
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Figure A2. Model performance for the autumn migration period, obtained with the R package “per-
formance” [78]. 

Figure A1. Heat map of Pearson’s correlation coefficient between the environmental variables initially
considered (EVI—enhanced vegetation index; TCTwet—tasseled cap transformation—water compo-
nent; LST—land surface temperature), taking into account the respective maximum values (max),
minimum (min), average (avg), and range (range). The correlations were represented graphically
using the “heatmap” function.
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