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A B S T R A C T   

Fungi are responsible for many of the processes that occur in natural ecosystems and largely determine forest 
ecosystem dynamics, such as the ability of trees to access limiting nutrients and sequester carbon. Understanding 
and predicting climate change impacts on fungal dynamics over large scales is key in order to gain further in
sights into the effects of global change on natural ecosystem functioning and related ecosystem services. In this 
study, we use predictive models based on machine learning algorithms to estimate, in a spatially explicit way, the 
historical and future (1976–2100) evolution of mycorrhizal and saprotrophic macrofungal productivity in 
Mediterranean forest areas under climate change scenarios. The greatest changes in total productivity, as well as 
mycorrhizal fungi, are predicted to occur in subalpine and montane pine forests, where fungal productivity is 
estimated to decrease, and will be more pronounced under climate change scenarios with higher expected in
crease in temperature. In contrast to mycorrhizal species, saprotrophic fungi could benefit from pronounced 
changes in climate and increase their productivity in supra- and mesomediterranean regions at mid-range ele
vations. Moreover, we estimated that fungal productivity has also changed historically in some scattered areas 
where changes in climate over the years may have led to a decrease in productivity. This study contributes to 
raising awareness on the need for anticipating potential global change impacts on this key element of ecosystem 
functioning, and for deploying possible management policies oriented toward maintaining the important role of 
fungal productivity in both climate change mitigation and adaptation.   

1. Introduction 

Climate change is affecting ecological systems at different spatial- 
temporal levels (Menzel and Fabian, 1999; Kröel-Dulay et al., 2015), 
including fungi and their dynamics (Kauserud et al., 2008; Diez et al., 
2013; B.S. Steidinger et al., 2020). Therefore, understanding and fore
casting climate change impacts on fungal productivity is crucial in order 
to gain further insights into broader impacts on natural ecosystems since 
fungi are responsible for many of the processes that occur in forest 
ecosystems. Moreover, fungal productivity also represents a highly 
valuable non-timber forest resource (i.e. fungal fruitbodies, mushrooms) 
in many societies and, especially, in the Mediterranean basin (Boa, 

2004; Palahí et al., 2009). Given that different fungal species and 
functional groups are driven differently by climatic, nutritional, or biotic 
factors, it is expected that different fungal guilds also react differently to 
changes in the environmental conditions (Kauserud et al., 2008; Diez 
et al., 2013; Bennett and Classen, 2020; Collado et al., 2019). Thus, 
mycorrhizal and saprotrophic fungi productivity may be affected 
differently by climate change and potentially further feed back into 
climate change impacts. 

In Mediterranean ecosystems, where fungal productivity is strongly 
driven by meteorological and climatic conditions, often within a context 
of limited water availability (Alday et al., 2017; Karavani et al., 2018; 
Morera et al., 2021), predicting the potential impacts of climate change 
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on fungal productivity is crucial in order to anticipate broad-scale im
pacts not only on fungal dynamics, but also on the whole forest 
ecosystem functioning in terms of both climate change mitigation and 
adaptation. In front of the expected changes in meteorological patterns 
arising from climate change predictions and their uncertainty, it is also 
necessary to analyze the potential impacts on fungal productivity by 
accounting for different scenarios representing alternative representa
tive concentration pathways (RCP) of greenhouse gasses. 

A few previous studies have estimated fungal productivity changes 
either on a small local area or with limited spatial or temporal resolution 
(Karavani et al., 2018; Ágreda et al., 2015; Morán-Ordóñez et al., 2020; 
Roces-Díaz et al., 2021), with somewhat opposite findings and conclu
sions limited by geographical study bias (Bennett and Classen, 2020). In 
this regard, no previous research has analyzed broader scale impacts of 
historical and future climate change on fungal productivity across 
different forest ecosystems and bioclimatic regions. To undertake this 
challenging task, the availability of unique long-term data series with 
reliable fungal productivity information is key to better understand and 
anticipate changes in fungal productivity and related ecosystems ser
vices as a result of changes in climatic conditions. Furthermore, the 
stochasticity that seems to drive fungal fruiting patterns makes evident 
the need for tools that allow the integration of a large number of pre
dictors and able to reflect the complexity of the relationships, often 
non-linear, between those variables and fungal productivity. In this re
gard, machine learning (ML) models are increasingly used for predicting 
ecologically and socioeconomically important attributes in natural 
ecosystems (Thessen, 2016; Christin et al., 2019). In particular, it was 
demonstrated that models based on the random forest algorithm are 
suitable for estimating mushroom productivity (Morera et al., 2021). 
These, not being subject to traditional statistical assumptions, can 
incorporate a large number of variables and find non-linear and complex 
patterns in the data. 

The aim of this study was to estimate and forecast the historical and 
future evolution (1976–2019 and 2020–2100, respectively) of total, 
mycorrhizal and soil saprotrophic aboveground macrofungal produc
tivity for different forest ecosystems representing a broad gradient in 
bioclimatic conditions of the Mediterranean forest biome, namely, 
subalpine, montane and supra-, meso‑ and thermomediterranean 
bioclimatic regions. According to these objectives, we propose three 
main hypotheses: (1) Due to the strong relationship between fungal 
ecology and weather-related drivers, the increase in aridity conditions, 
due to climate change, will negatively affect macrofungal productivity. 
(2) The different ecological requirements of mycorrhizal and sapro
trophic fungi will entail different climate change impacts on the pro
ductivity of both functional guilds. (3) Climate change-induced spatio- 
temporal changes in fungal productivity will be distributed heteroge
neously throughout the landscape as a result of fine-grain spatio-tem
poral variation of historical and future changes in climatic conditions 
affecting functional guilds differently under alternative climate change. 
To address these research objectives and hypotheses, we used random 
forest-based models trained with more than 3000 records of total, 
mycorrhizal and soil saprotrophic annual fungal productivity and 
meteorological information of high spatial and temporal resolution to 
obtain spatially-explicit predictions of historical and future trends in 
fungal productivity based on historical meteorological records and 
different climate change scenarios. 

2. Materials and methods 

2.1. Study area and modeling data 

This study has been carried out using data from a permanent network 
of 131 sampling plots on the western Mediterranean basin sampled 
weekly during the main fungal fruiting period (between June and 
December, in the study area) from 1997 until 2019. The 10 × 10 m plots 
are randomly distributed along a wide altitudinal and bioclimatic range 

between 337 and 1992 m above sea level, representing most of the 
Mediterranean bioclimatic regions and throughout the main pine forest 
ecosystems of the Mediterranean basin (see Fig. 1 for more details on 
bioclimatic regions and pine ecosystems). Fungal fruitbodies (i.e. 
mushrooms) of all macrofungal species were collected for subsequent 
taxonomic classification and biomass measurements (see Table S1 for 
more information on numbers of plot and sampled productivity per 
bioclimatic region). Through aggregation of weekly fungal productivity 
data over each sampling year, we obtained annual aboveground pro
ductivity of fungi by species, plot and year. Fungal species were further 
classified into two main functional groups, namely soil saprotrophic 
(including generalist saprotrophs) and mycorrhizal fungi based on 
expert knowledge and the existing literature (Agerer 2006; Hobbie and 
Agerer 2010; Tedersoo et al., 2014). More information on the experi
mental design can be found in Martínez de Aragón et al. (2007). 

Meteorological information for each plot was obtained from the 
weighted mean of interpolated and altitudinally corrected values of 
different weather variables retrieved from the Meteorological Service of 
Catalonia (SMC) and the Spanish Meteorological Agency (AEMET) 
meteorological stations surrounding each sampling plot. Namely, daily 
precipitation as well as average, maximum, and minimum daily tem
perature of each plot were obtained using the R package "meteoland" 
(De Cáceres et al., 2018). 

2.2. Modeling 

The evolution of fungal productivity over time in a climate change 
context was predicted on a yearly basis. Meteorological data were 
aggregated at the monthly level to provide information across the fungal 
fruiting season and to reduce in a meaningful way the number of po
tential model predictors compared to working on a daily or weekly scale. 

We trained random forest (RF) models to predict total, mycorrhizal 
and saprotrophic annual fungal productivity using the "ranger" R 
package (Wright and Ziegler, 2017). In combination with an environ
mental blocking strategy (Roberts et al., 2017), RF allows for finding 
ecologically consistent non-linear relationships between a large set of 
variables in the prediction of fungal productivity under environmental 
conditions beyond the range of the modeling data, making it suitable for 
assessing climate change impacts (Morera et al., 2021). Potential pre
dictors to be used in the models were selected based on relative 
importance within the candidate models (as represented by the mean 
decrease in node impurity of random forest decision trees), the 
Spearman correlation between annual fungal productivity and climate 
variables, and between climate variables (see Table S2 and Figure S1 to 
S3 for detailed information on the variables used). A proper selection of 
predictor variables allows for reducing the number of predictors 
achieving a better interpretation of the models (Coelho et al., 2019), also 
increasing the similarity between the range of environmental conditions 
represented in the modeling data and the past and future environmental 
conditions throughout the study area (Morera et al., 2021). 

The hyperparameters “mtry” (number of variables randomly 
sampled as candidates at each split), “min.node.size” (minimum size of 
terminal nodes), and “num.trees” (number of trees to grow) of each 
random forest model were tuned using a Bayesian model-based opti
mization focused on reducing the prediction error (RMSE) as imple
mented in the R package "mlr3mbo" (Kotlarski et al., 2014). The 
hyperparameters abbreviations were based on the terminology used in 
the R “ranger” package (Wright and Ziegler, 2017). The search space for 
hyperparameters optimization was defined by the hyperparameters 
ranges shown in Table S3 using a resampling strategy based on envi
ronmental blocking (Roberts et al., 2017). 

Models were evaluated based on their predictive accuracy, as well as 
the ecological interpretation of the variables used to train them. The 
predictive accuracy of models was assessed from an environmental 
cross-validation using the average of the root mean square error (RMSE) 
of 10 folds. Due to the expected differences between past and future 
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climatic conditions, the use of an environmental blocking aimed at 
representing appropriately the prediction error of the models in a 
climatically differentiated environment. Partial dependence plots 
(PDPs) were used to depict and understand the patterns in the training 
dataset between fungal productivity and model predictors. The resulting 
PDPs were evaluated on the basis of existing scientific and expert 
knowledge in order to assess whether they followed ecologically 
consistent patterns. 

2.3. Assessment of past and future climate change impacts 

To assess the historical and future evolution of annual fungal pro
ductivity, we used meteorological data for the periods 1976–2019 and 
2020–2100 at 1-km resolution, respectively. Historical meteorological 
information were obtained from the weighted mean of interpolated and 
altitudinally corrected values of the variables retrieved from SMC and 
AEMET. Daily future climate projections were obtained from the 
EURO–CORDEX initiative (Kotlarski et al., 2014). We selected simu
lations based on two Global Circulation Models (GCM), three Regional 
Climate Models (RCM) (see couples in Table S4), partly based on the 
criteria described by Fargeon et al. (2020) in a region adjacent to our 
study area, and then compared using two contrasted greenhouse gasses 
emissions, namely, RCP 4.5 and RCP 8.5 (IPCC, 2014). Future RCPs 
projections of daily precipitation and temperature were downscaled 
(according to local topography using the reference period 1990–2005) 
and bias-corrected at 1-km resolution using interpolated historical 

weather as reference. Interpolations, downscaling and corrections were 
made with the R package "meteoland" (De Cáceres et al., 2018). 

Historical and projected future trends in annual fungal productivity 
were predicted at the landscape level based on CORINE habitat (Moss 
and Wyatt, 1994) maps at 1-km resolution (Fig. 1). The forest extent 
over time was considered constant and with the current pine forest 
distribution in the study area. Historical fungal productivity was ob
tained for each 1-km2 pixel and year for the period 1976–2019. Simi
larly, future fungal productivity was estimated for the different 
scenarios defined by the alternative aforesaid RCPs and GCM-RCM 
couples for the period 2020–2100. To evaluate differences between 
different RCPs, the average fungal productivity of each GCM-RCM 
couple was used. Moreover, the average annual fungal productivity 
over the whole study region was also estimated by computing the mean 
of all the per pixel values obtained throughout the study area. Once 
spatially explicit annual predictions of total, mycorrhizal and sapro
trophic fungal productivity were obtained for the historical and future 
periods, for each pixel we assessed the statistical significance of the 
historical and future trends in fungal productivity using the 
Mann-Kendall test (Mann, 1945). Moreover, Theil-Sen’s approach (Sen, 
1968) was used to assess the magnitude of those statistically significant 
trends (i.e. significant changes in total, ectomycorrhizal or saprotrophic 
fungal productivity). The Mann-Kendall test and Theil-Sen approach 
were conducted using the R packages "Kendall" (McLeod, 2011) and 
"mblm" (Komsta, 2019), respectively. Finally, spatially explicit pre
dictions (i.e., maps) of the historical and future evolution of fungal 

Fig. 1. Study area (red polygon) location in the Mediterranean basin (A), bioclimatic regions of the study area (B), and main pine forest ecosystems of the study area 
where mushroom productivity was estimated (C). Blue dots (in figures B and C) correspond to the sampled plots. In figure B, different bioclimatic regions are 
represented by letters as follows: A-alpine, B-subalpine, C-montane, D-foothill, G-supramediterranean, H-mesomediterranean, and I-termomediterranean (according 
to Rivas-Martínez (1987)). The dark brown areas (“-”) in figure B are not assigned to any bioclimatic region. Coordinates system: WGS 84. 
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productivity at the landscape (i.e. regional) level was obtained for the 
different RCPs. Moreover, the overall trend for the whole study area was 
obtained by averaging over the productivity values of each pixel 
throughout the study region. Finally, to relate spatially explicit histori
cal and future changes in fungal productivity to spatially explicit 
changes in climatic conditions, we also estimated the statistical signifi
cance and magnitude of the changes in the meteorological patterns 
represented by model predictors using the Mann-Kendall test and the 
Theil-Sen approach. 

3. Results 

3.1. Predictive accuracy of fungal productivity 

RF models explained 42% of the variance of total fungal productiv
ity, and 40% and 20% of mycorrhizal and saprotrophic fungal produc
tivity, respectively. Environmental cross-validation resulted in a 
prediction error of 133 kg⋅ha-1⋅yr-1 in terms of RMSE for the models of 
total fungal productivity. RMSE for mycorrhizal and saprotrophic fungal 
productivity models was 128 and 19 kg⋅ha-1⋅yr-1, respectively. The 
optimal hyperparameters for each model are shown in Table S5. 

3.2. Relationships between fungal productivity and meteorological 
conditions 

The adjusted models gave higher relative importance to precipitation 
variables (~70%) compared to the mean monthly maximum tempera
ture variables (~30%). The models for total and mycorrhizal fungal 
productivity showed greater importance of precipitation between 
August and October and the mean maximum temperature between 
August and October. On the other hand, the model for saprotrophic 
fungal productivity gave greater importance to October precipitation, 
followed by rainfall in August, September, and November (Fig. 2 and 
S4). 

PDPs described a positive relationship between annual fungal pro
ductivity and monthly rainfall. The models for total and mycorrhizal 
fungal productivity described continuous nonlinear increase of 

productivity with increasing precipitation of August and October, 
whereas the relationship with September and November precipitation 
was step-shaped. On the other hand, saprotrophic fungal productivity 
was predicted to increase exponentially only with increasing October 
precipitation. The mean maximum temperature of August, September 
and October showed a negative relationship with total and mycorrhizal 
fungal productivity, while the effect of November precipitation was 
slightly positive (Fig. 2 and S4). 

3.3. Assessment of historical and projected climate change impacts on 
fungal productivity 

Our results showed that the historical change (between 1976 and 
2019) in mean total fungal productivity for both the study region as a 
whole and the different bioclimatic regions was not statistically signif
icant (Table 1 and S6, Fig. 3B and 4). However, the spatially-explicit 
analysis indeed revealed statistically significant changes in total 

Fig. 2. Partial dependence between model predictors and total fungal productivity across the range of model training meteorological data. VI shows the relative 
variable importance of each predictor in terms of the mean decrease in node impurity. 

Table 1 
Historical and projected future changes in average annual fungal productivity 
(kg⋅ha-1⋅yr-1) in the study area. Trends are calculated from Theil-Sean approach.   

GCM-RCM Historical RCP 4.5 RCP 8.5 

Total fungi Mean -0.75 0.31 -0.23 
MPI - RCA4 – -0.10 -0.20 
MPI - REMO2019 – -0.06 -0.48* 
CNRM - RCA4 – 0.42 -0.21 
CNRM – CCLM4–8–17 – 0.51 -0.30* 

Mycorrhizal fungi Mean -0.49 0.18 -0.23* 
MPI - RCA4 – -0.08 -0.14 
MPI - REMO2019 – -0.06* -0.33* 
CNRM - RCA4 – -0.29 -0.18* 
CNRM – CCLM4–8–17 – -0.42 -0.42* 

Saprotrophic fungi Mean -0.06 0.02 0.03* 
MPI - RCA4 – -0.03 -0.06 
MPI - REMO2019 – -0.01 0.01 
CNRM - RCA4 – -0.02 -0.02 
CNRM – CCLM4–8–17 – 0.03 -0.06  

* Denotes a statistically significant trend according to the Mann-Kendall test. 
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productivity at some locations throughout the study area, scattered from 
the subalpine to the mesomediterranean bioclimatic regions and ranging 
from -5.02 to -0.55 kg⋅ha-1⋅yr-1 and with a mean reduction of -1.47 
kg⋅ha-1⋅yr-1. The areas with a statistically significant increase in total 
fungal productivity were scattered and localized in a few subalpine pure 
stands of Pinus uncinata and P. sylvestris, with a fungal productivity in
crease ranging from 0.55 to 2.42 kg⋅ha-1⋅yr-1 (Fig. 3A). Mycorrhizal and 
saprotrophic fungal productivity showed similar trends as described for 
all fungal species altogether. Namely, there was no statistically signifi
cant reduction in mean fungal productivity at the level of the whole 
study region nor at the bioclimatic region level, but statistically signif
icant (both positive and negative) changes were found within different 
areas and bioclimatic regions (Table S6, Fig. 3, 4 and S5). While the 
patterns for mycorrhizal species were almost identical to those of total 
fungal productivity, saprotrophic fungi were predicted to decrease 
mostly in subalpine and montane P. uncinata and P. sylvestris forests. The 
expected historical reduction in fungal productivity in those areas with 
predicted statistically significant changes was of -1.21 kg⋅ha-1⋅yr-1 

(ranging from -5.08 to 2.14 kg⋅ha-1⋅yr-1) for mycorrhizal fungi, and -0.15 
kg⋅ha-1⋅yr-1 (ranging from -0.26 to 0.17 kg⋅ha-1⋅yr-1) for saprotrophic 
fungi. 

Projections of future productivity considering all fungal species 
differed between RCPs. At the level of the whole study region, mean 
fungal productivity was not predicted to change significantly during 
2020–2100 under RCP 4.5 and RCP 8.5 (Table 1, Fig. 3B). However, for 
RCP 4.5, the spatially explicit analysis revealed a statistically significant 
decrease in productivity in subalpine P. uncinata and P. sylvestris forests 
(with a mean value of -0.48 kg⋅ha-1⋅yr-1, ranging from -1,10 to -0.07 
kg⋅ha-1⋅yr-1), while total fungal productivity was predicted to remain 
more stable in the other bioclimatic regions. Furthermore, under RCP 
8.5, total fungal productivity was predicted to decrease more generally 
and to a greater extent in subalpine P. uncinata and P. sylvestris forests 
and many of the montane P. sylvestris forests (about 2.5-fold higher 
compared to RCP 4.5, and a mean value of -0.78 kg⋅ha-1⋅yr-1, ranging 
from -2.45 to 0.32 kg⋅ha-1⋅yr-1). In contrast, total productivity was not 
predicted to experience any significant changes in supra- and meso
mediterranean pine forests under any climate change scenario. We only 
found a predicted decrease in total fungal productivity for some supra
mediterranean forests in the southern part of the study area dominated 
by P. nigra and P. sylvestris. Statistically significant increases in total 
productivity were only predicted for some coastal locations of meso
mediterranean P. halepensis forests under the RCP 8.5 scenario, but they 

Fig. 3. Historical and future changes in total fungal productivity. Future RCP 4.5 and 8.5 projections were obtained by averaging the spatially explicit fungal 
productivity over each of GCM-RCM couples. (A) Spatially explicit changes across the study area. gray areas represent no statistically significant changes. Box-plots 
summarize the range of statistically significant changes in fungal productivity in each map as represented by the legend. (B) Mean fungal productivity trend across 
bioclimatic regions for the whole study area. Straight lines show the linear trend with a 95% confidence interval (shaded areas). 
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were merely marginal (Fig. 3A). At the bioclimatic region level, this 
results in a statistically significant decrease in total fungal productivity 
in the subalpine and montane regions under RCP 8.5, while there was no 
decrease neither in the supra- and mesomediterranean regions under 
RCP 8.5 nor in any of the bioclimatic regions under RCP 4.5 (Fig. 4 and 
Table S6). 

Regarding both fungal functional groups, we found that none of them 
was predicted to experience any statistically significant change in mean 
fungal productivity for the whole study area under the RCP 4.5 scenario. 
Conversely, under RCP 8.5 we predicted a significant decrease of -0.23 
kg⋅ha-1⋅yr-1 in mean fungal productivity of mycorrhizal fungi, and a 
significant increase of 0.03 kg⋅ha-1⋅yr-1 in the case of saprotrophic fungi 
(Table 1). The spatially explicit changes under different climate change 
scenarios for mycorrhizal species were very similar to those predicted 
for all fungal species altogether. For saprotrophic species, statistically 
significant changes were found in subalpine P. uncinata forests under 
RCP 4.5, with a mean reduction of -0.03 kg⋅ha-1⋅yr-1, ranging from -0.08 
to 0.05 kg⋅ha-1⋅yr-1 (but not statistically significant at the whole region 
level). Under RCP 8.5, we found that the area where productivity was 
predicted to decrease was similar to RCP 4.5, while the area where 

production is predicted to increase in the future, namely, supra- and 
mesomediterranean, became larger, showing an overall increase of 0.03 
kg⋅ha-1⋅yr-1 (ranging from -0.10 to 0.08 kg⋅ha-1⋅yr-1) in supra- and 
mesomediterranean pine forests dominated by pure stands of 
P. halepensis and P. nigra and mixed stands of P. nigra with P. halepensis or 
P. sylvestris (Fig. 4, 5 and Table S6). 

Regarding the spatially explicit level of analysis, a reduction in the 
predicted total and mycorrhizal fungal productivity was found in 
different bioclimatic regions for both historical and future periods. 
While in the future climate change scenarios the changes in productivity 
were concentrated in subalpine and montane pure stands of P. uncinata 
and P. sylvestris of the Pyrenean mountain range (northern part of the 
study area), during the historical period analyzed, the predicted changes 
were rather distributed in small clusters scattered throughout the ter
ritory. Regarding saprotrophic fungi, the differences between the his
torical and future periods were more remarkable. Both in the historical 
period and RCP 4.5 a decrease in fungal productivity was estimated in 
subalpine forests of P. sylvestris and P. uncinata, whereas in the RCP 8.5 
scenario the trend was an increasing one in the rest of bioclimatic re
gions (Fig. 5). 

Fig. 4. Predicted historical and future (under RCP 4.5 and RCP 8.5) mean fungal productivity trends in subalpine, montane, supra- and mesomediterranean 
bioclimatic regions. Straight lines show the linear trend with a 95% confidence interval (shaded areas). Numerical information relating to this table is described 
in Table S6. 
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It is worth noting the differences in fungal productivity estimates 
derived from different GCM-RCM couples. In the RCP 4.5, total fungal 
productivity in Mediterranean forests of the study area were predicted to 
drop more under the MPI-M-MPI-ESM-LR model compared to the 
CNRM-CERFACS-CNRM-CM5. Conversely, these differences are not 
evident in RCP 8.5 (Table 1 and Figures S6 and S7). 

4. Discussion 

This is the first study that we are aware of to assess spatially explicit 
historical and future changes in fungal productivity in natural ecosys
tems, using predictive models. Until now, climate change-induced shifts 
in fungal productivity have only been studied at a very local scale and 
without taking into account a broad bioclimatic gradient over a large 
study region (Karavani et al., 2018; Ágreda et al., 2015; Morán-Ordóñez 
et al., 2020). Our study was performed using the largest spatial-temporal 
fungal productivity monitoring dataset from Mediterranean forests, 
resulting from a consistent sampling and taxonomic identification 
within more than a hundred permanent sampling plots monitored for 
more than twenty years, which overcomes most of the problems sug
gested by Hao et al. (2020) regarding the modeling of fungal resources. 
These data allowed us to work with a high spatial resolution, which is 
crucial when predicting fungal biogeographic patterns, since small 
changes in environmental conditions may imply large changes in fungal 
productivity (Morera et al., 2021). 

This study shows that fungal productivity in Mediterranean forests 
has been and will be affected by climate change in different ways across 
large-scale landscapes (with different bioclimatic regions) and under 
different climate change scenarios. Changes in fungal productivity in 
RCP 4.5 were almost non-existent, showing that in a context where 
greenhouse gasses emissions were reduced over the next decades (IPCC, 
2014), it may be possible to minimize the impact of climate change on 
fungal productivity and related ecological processes. Nevertheless, in 
the more severe climate change scenario (RCP 8.5), changes in fungal 
productivity are predicted to be much more widespread. Similar 

differences between RCPs were reported to affect fungal species richness 
and abundance in North American boreal forests (B.S. Steidinger et al., 
2020) and the distribution of specific species in China (Guo et al., 2017). 
However, there is a strong controversy about how fungal productivity 
will change in front of climate change (Morán-Ordóñez et al., 2021). 
Boddy et al. (2014), Ágreda et al. (2015) and Thomas and Büntgen 
(2019) point out that there could be a decrease in mushroom produc
tivity due to a delay in phenology (Büntgen et al., 2015; Kauserud et al., 
2012), while Karavani et al. (2018) suggested that mushroom produc
tivity could even increase in certain areas due to a widening of the 
fruiting season. 

These estimated changes in fungal productivity are closely related to 
observed and forecasted changes in Mediterranean climate (see 
“Extended Technical Description of Results” in Supplementary Text for 
details). For both historical and future periods, an overall significant 
increase in temperature is expected to occur throughout the study re
gion. However, no significant changes are expected to occur in autumn 
precipitation, except in a few scattered areas (Figures S1 to S3). In 
addition, those areas with a greater predicted decrease in fungal pro
ductivity (P. sylvestris and P. nigra forests of subalpine and montane 
regions) were those areas with a greater increase in temperature, espe
cially under RCP 8.5. This suggests that increased temperature as a 
result of global warming may be the main driver of fungal productivity 
changes in Mediterranean ecosystems in the long run, even though it is 
indeed expected that changes in fungal productivity are a consequence 
of changes in both temperature and precipitation. This is supported from 
the point of view of species phenology across space due to climate 
variability (Andrew et al., 2018). Such changes in temperature and 
fungal productivity became less marked with decreasing altitude within 
these bioclimatic regions. However, some areas in bioclimatic regions 
other than the subalpine and montane forests (i. e. P. sylvestris and 
P. nigra forests in the southern supramediterranean region of the study 
area) were predicted to experience a decrease in fungal productivity, but 
not a greater increase in temperature compared to surrounding areas. In 
contrast, these areas are predicted to experience a significant decrease in 

Fig. 5. Spatially explicit historical and future changes in mycorrhizal and saprotrophic fungal productivity. Box-plots summarize the range of statistically significant 
changes in fungal productivity in each map as represented by the legend. Future RCP 4.5 and 8.5 projections were obtained by averaging the spatially explicit fungal 
productivity over each of GCM-RCM couples. gray areas represent no statistically significant changes. 
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October precipitation, which is consistent with the delayed fruiting 
phenology compared to subalpine and montane forests (Karavani et al., 
2018). 

The spatially explicit analysis of historical trends showed different 
patterns compared to future projections. This is consistent with the 
differences between historical and future climate trends observed in the 
study area (Figures S1 to S3). These different patterns could be partly 
due to a statistical artifact of using two time periods (historical vs. 
future) of different length (43 years from 1976 to 2019, compared to 80 
years from 2020 to 2100 used in future projections), where the very 
large inter-annual variability in fungal productivity may partly blur the 
influence of longer term trends of climate variables. This is also probably 
the reason of the small break between the historical and future (linear) 
trend lines of overall fungal productivity (Figs. 3B and S2), even though 
both lines match within the 95% confidence interval. 

We estimate that under both RCP 4.5 and 8.5, the largest and most 
significant changes in productivity are predicted to occur in P. sylvestris 
and P. uncinata forests of subalpine and montane regions. These areas 
currently host the highest fungal productivity in the study region 
(de-Miguel et al., 2014; Morera et al., 2021). In these areas, where 
macrofungi live closer to their physiological limit, it was expected that 
changes would be greater (J. Diez et al., 2020). In our study area, the 
greatest change in the higher altitude areas is shown in the shape of a 
similarly negative exponential relationship between fungal productivity 
and the average maximum temperature of August and October (both the 
most important temperature-related variables in our models). This 
relationship leads to a more pronounced decline in productivity in 
colder areas for the same increase in temperature. 

When dealing with complex orography (such as in many areas 
throughout the distributional range of Mediterranean forests), the use of 
statistical downscaling to a resolution of 1 km allowed to improve the 
spatially explicit estimates. The differences found between future fungal 
productivity trends described by different GCM-RCM couples highlight 
the need for evaluating a set of alternative models to minimize the po
tential prediction bias that may arise from relying on one single model 
(Knutti et al., 2010). Besides, using RCMs takes on greater importance 
when making predictions at larger scale at the regional level where, by 
aggregation, small-scale differences become even more important. Thus, 
RCMs allow for reducing prediction bias without increasing the uncer
tainty of GCMs predictions because the biases of both models are neither 
additive nor independent, resulting in more accurate average estimates 
of annual fungal productivity (Knutti et al., 2010). This becomes 
particularly important in areas where a complex orography contributes 
to notable differences in meteorological and bioclimatic conditions at 
the regional scale. 

In line with the findings reported by Salerni et al. (2002), Kauserud 
et al. (2008), Büntgen et al. (2013) and Ágreda et al. (2015), we found 
that the relationships between environmental variables and fungal 
productivity, as well as the importance given to each predictor in the 
models, varied depending on the fungal trophic strategy. Such variation 
reflects differences in the fruiting phenology of the species in each 
functional group and their ecological requirements (Diez et al., 2013; J. 
2020). Since mycorrhizal species start fruiting earlier in our study area, 
fungal productivity models gave greater importance to predictors 
referring to August or September weather conditions. On the other hand, 
since saprotrophic species tend to emerge later, fungal productivity 
models gave greater importance to predictors related to weather con
ditions in October. Saprotrophic species are generally found in the soil 
organic layers (Lindahl et al., 2007; Kluting et al., 2019), making them 
more sensitive to sudden changes in moisture. This may explain why the 
models for saprotrophic species productivity gave considerably greater 
importance to October precipitation (the month of highest saprotrophic 
fungal productivity) compared to October maximum temperature, 
whereas in the models for mycorrhizal fungal productivity the differ
ences in variable importance between October precipitation and 
maximum temperature were much lower. Such differences in variable 

importance for different fungal functional groups led to distinct pre
dicted productivity trends between mycorrhizal and saprotrophic fungi. 
Moreover, these changes in mycorrhizal fungal productivity could also 
be further modulated by the indirect impact of climate change on tree 
phenology and growth (Egli et al., 2010). It should be noted that both 
the estimates of mycorrhizal fungal productivity and the relationships 
with their main drivers are very similar to those found for total fungi. 
This is because most of the total mushroom biomass in Mediterranean 
ecosystems (here represented by our dataset) corresponds to mycor
rhizal species (Table S1; Ágreda et al., 2015). 

The assessed fungal productivity changes along time in a climate 
change context must be framed within a global shift in Mediterranean 
natural ecosystems (Guiot and Cramer, 2016). These changes do not 
only affect fungal productivity per se. Indeed, due to the important role 
fungi play in natural ecosystems, changes in their biogeographical 
productivity patterns have the potential to affect the diversity and 
functioning of forest ecosystems (Gouveia et al., 2017; Santonja et al., 
2017). Climate change is predicted to affect the diversity and distribu
tion of mycorrhizal symbioses (Steidinger et al., 2019; B.S. 2020), which 
determine the ability of trees to access limiting soil nutrients (Batterman 
et al., 2013; Shah et al., 2016) or to sequester carbon (Clemmensen et al., 
2015; Averill et al., 2018). Therefore, changes in the distribution of 
these symbioses directly affect forest ecosystems’ ability to resist the 
effects of climate change (Terrer et al., 2016). Such changes in forest 
ecosystems may, in turn, further impact fungal communities, creating a 
feedback loop leading to accelerated changes in these ecosystems. In 
addition, since mushrooms are the fruitbodies of fungi where spores are 
produced, changes in fungal productivity directly affect the spore 
dispersal of these organisms. Decreased spore production can directly 
affect the rate of spore arrival and thereby limiting fungal dispersal 
(Norros et al., 2012). Such spore dispersal limitation plays a key role in 
shaping the spatial patterns of fungi (Nordén, 2000) and highlights the 
need to further study the relationship between both. 

Due to the lack of consistent projections of other potential drivers of 
fungal productivity at the landscape level throughout the study area, in 
this study fungal productivity changes were assessed as a function of 
changes in climatic conditions, without considering other drivers such as 
tree species migration or forest structural changes from either environ
mental or anthropogenic origin. Having this type of information would 
allow for more accurate prediction of fungal productivity changes and 
increase the understanding of past, and future forest ecosystem dy
namics. However, although changes in structural characteristics of 
Mediterranean forest stands can have considerable impacts on the pro
vision of different ecosystem services, fungal productivity is likely to be 
more influenced by climate change due to the direct link between 
weather conditions and mushroom emergence, especially in water- 
limited forest ecosystems (Morán-Ordóñez et al., 2020). 

5. Conclusions 

Our results suggest that climate change is negatively affecting fungal 
productivity, with subalpine and montane ecosystems (located at higher 
altitudes) being the most affected. Furthermore, these impacts can differ 
between fungal trophic strategies. Mycorrhizal fungi productivity (more 
abundant in terms of total biomass) will decrease in subalpine and 
montane regions, and more markedly and extensively under RCP 8.5 
compared to RCP 4.5. Conversely, saprotrophic fungi productivity could 
be enhanced in the supra- and mesomediterranean regions under RCP 
8.5. This results in a complex mosaic of climate change impacts on 
fungal productivity across the landscape depending on the relationships 
found between meteorological drivers and fungal species. In a nutshell, 
this study sheds light on the need for anticipating potential global 
change impacts on fungal dynamics, a key element of forest ecosystem 
functioning, and for deploying management policies oriented toward 
maintaining the important role of fungal productivity in the provision of 
multiple ecosystem services, including both climate change mitigation 
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and adaptation. 
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