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Abstract

Questions: How can existing vegetation classifications be updated when new

plot data are obtained? Can we use the properties of plots classed as outliers to

identify gaps in our understanding of vegetation patterns and so direct future

enquiry?

Location: New Zealand.

Methods:We updated a pre-existing classification of New Zealand’s forests and

shrublands based on a nationally representative data set (1177 plots) by using

12 374 additional plot records from New Zealand’s National Vegetation Survey

Databank (NVS). We resampled the NVS plot records to remove uneven repre-

sentation along floristic and geographic gradients. To update the classification at

the alliance level, we first cast the original classification into the fuzzy classifica-

tion framework of Noise Clustering and then discarded original types with low

plot numbers and high compositional variation. We then used the plot records

that could not be assigned to any original alliance to define new alliances, while

retaining the original alliances as fixed elements. We also defined vegetation

associations to create a classification at a lower level of abstraction and related it

to the classification at the alliance level. Finally, we determined whether known

rare types were represented among the new vegetation types and characterized

plot records classed as outliers.

Results: After casting the 24 original alliances in the NC framework, we dis-

carded seven. We extended the 17 remaining alliances with 12 new ones and

defined 79 associations. All 12 new alliances had extents <120 986 ha, which is

smaller than the original alliances, and included rare types that were known to

exist but could not be defined using the objectively sampled data set underpin-

ning the original classification. Plot records classed as outliers tended to occur at

lower altitudes or in successional shrublands. Further sampling is required to

adequately define vegetation types in such situations, although composition

may be inherently erratic in successional shrublands.

Conclusions: Our analysis illustrates the application of a fuzzy classification

framework at a national scale and provides a model for others wishing to extend

and update vegetation classifications. Our approach allows rare community

types to be defined and identifies portions of compositional and geographic gra-

dients that are poorly documented.

Introduction

To be most useful, classifications of vegetation should

allow for extensions, modifications or refinements as new

data become available. In traditional phytosociology, new

vegetation types (normally associations or sub-associa-

tions) were progressively defined and added to the

syntaxonomical system as new areas were surveyed

(Braun-Blanquet 1929, 1964; Ewald 2003). Typically, such

updates weremade without destroying the vegetation type

concepts previously defined. With the advent of numerical

classification techniques, vegetation classification has

become more formalized and repeatable (Mucina 1997).

Most numerical classification methods, however, do not
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easily accommodate the provisional nature of vegetation

classifications. That is, those methods cannot adequately

fulfill the need to preserve some existing types while dis-

carding others and defining new ones. Rebuilding classifi-

cations is impractical when previously defined types are

already in established use.

De Cáceres et al. (2010) recently provided a frame-

work, based on fuzzy clustering, to deal with the

‘dynamic’ character of vegetation classifications. These

authors stressed the need to consistently use the same

methodological framework for different tasks, such as

assigning new plot records to existing vegetation types,

updating the definition of existing types or creating new

ones. Although De Cáceres et al. (2010) illustrated the

tasks of their framework using example data sets, they

did not fully anticipate the range of challenges that arise

when attempting to extend and refine a pre-existing

classification.

The first challenge arises because the pre-existing classi-

fication may have not been derived using the same analyt-

ical framework that is needed for the extension. Given the

myriad of quantitative classification methods available and

that different methods may be appropriate in different situ-

ations (Mucina 1997; McCune & Grace 2002), this sce-

nario is likely to apply to many pre-existing classifications.

For example, using a different distance metric and/or clus-

tering algorithm can result in some plots being assigned to

a different type. Approaches are needed to evaluate the

consequences of such changes and determine whether the

original classification is valid under the new analytical

framework (e.g. Feoli et al. 2006). A second set of chal-

lenges arises when one intends to update the existing clas-

sification using a large number of plot records, such as

those available in large phytosociological databases

(Dengler et al. 2011). Because phytosociological databases

comprise many heterogeneous data sets, analytical results

may largely reflect the vegetation types and geographic

regions that are disproportionally represented by the plot

data (Roleček et al. 2007; Lengyel et al. 2011). Accord-

ingly, these new data may need to be resampled to retain

an appropriate representation of the range of vegetation

composition present without introducing substantial geo-

graphic bias. Although the resampling approach of Lengyel

et al. (2011) enables the range of compositional variation

in the vegetation plot data to be retained, it does not pro-

vide a solution to the problem of geographic bias. Finally,

incorporating many more plot records than those of the

data set that underpinned the existing classification can

allow vegetation types to be defined at a higher level of res-

olution. In phytosociological studies following the Braun-

Blanquet method syntaxa of different levels are related in

fully nested relationships (e.g. Dengler et al. 2005). While

classifications obtained using fuzzy clustering methods

should be related in a fuzzy way, methods to do this are

still underdeveloped.

Recently, a numerically-derived classification at the alli-

ance level was produced for New Zealand’s woody vegeta-

tion based on a nationally representative plot network of

1177 vegetation plots (Wiser et al. 2011). The objective,

area-proportional sampling design had the advantage of

not being affected by the preconceptions of the nature of

the drivers of vegetation composition that may be inherent

in environmentally stratified sampling (Cooper et al.

2006) or the biases against sampling anthropogenically-

disturbed vegetation often found in preferential sampling

(Chytrý & Rafajová 2003; Botta-Dukát et al. 2007). One of

the well-known drawbacks of area-proportional sampling,

however, is that rare vegetation types may not be sampled

with enough plots to allow them to be defined (Pignatti

1980; Økland 2007; Roleček et al. 2007). Indeed, the New

Zealand classification provided greater partitioning within

dominant forests than previous national-scale classifica-

tions and defined successional types that had not previ-

ously been recognized, but it failed to distinguish some

known rare forest types. Moreover, because the New Zea-

land classification was based on only 1177 plots, alliances

could not be partitioned as finely as some existing regional

classifications, i.e. to the association level. Existing plot

records from New Zealand’s National Vegetation Survey

Databank (NVS; Wiser et al. 2001) could be used to fill

these two gaps.

In this paper we take plot records from the NVS data-

bank and adopt the classification framework of De Cáceres

et al. (2010) to illustrate how an existing vegetation classi-

fication can be extended with new plot data. In particular,

we address the following two questions: (1) can we define

new alliances or associations to represent known New

Zealand rare forest types; and (2) can we use the properties

(e.g. geographical location, environmental conditions and

composition) of plots classed as outliers to identify gaps in

our understanding of New Zealand woody vegetation pat-

terns and so direct future enquiry? Additionally, in our

classification exercise we demonstrate how the challenges

mentioned above can be overcome. In so doing we provide

solutions to the problems associated with geographic and

compositional bias in the data obtained from large phyto-

sociological databases, casting an existing classification into

a new classification framework, and relating a classifica-

tion at a lower level of abstraction (i.e. association level) to

a higher level (i.e. alliance) in a fuzzy way.

Methods

Study area and original classification

Indigenous forests and shrublands cover ca. 23% and

10% of New Zealand’s 27 million hectares of land
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surface, respectively (Thompson et al. 2004), whereas

before humans arrived forests dominated the landscape.

The forests are evergreen and dominated by different

combinations of Nothofagus spp., broad-leaved angio-

sperms, Agathis australis and other conifers (predomi-

nantly podocarps) (Cockayne 1928; McKelvey &

Nicholls 1957; Wardle 1984). Shrublands occur in sub-

alpine areas and in lowland and montane regions that

were presumably forested in pre-human times (Wardle

1991).

From 2002 to 2007, 1177 20-m 9 20-m permanent

vegetation plots were established at intersections of an

8-km 9 8-km grid superimposed on the areas mapped

as shrubland or indigenous forest by the New Zealand

Land Cover Database (LCDB version 1; Thompson et al.

2004). Data were collected under the auspices of the

New Zealand Land Use and Carbon Analysis System

(LUCAS; Coomes et al. 2002; Allen et al. 2003). On

each 20-m 9 20-m plot, the abundance of each species

present was recorded in seven fixed height tiers using a

modified Braun-Blanquet cover–abundance scale (Hurst

& Allen 2007). These data were the basis for a quantita-

tive classification exercise that produced 24 alliances,

each containing 19–105 plot records, and estimated

extents of 144 000–794 000 ha (Wiser et al. 2011).

Wiser et al. (2011) progressed earlier classification efforts

in New Zealand by defining contemporary vegetation

types, especially alliances in disturbed landscapes and

those invaded by exotic species, in addition to recogniz-

ing already described common forest types.

Data assembly, manipulation and transformation

New Zealand’s NVS contains records from approximately

77 000 vegetation survey plots (Wiser et al. 2001; http://

www.givd.info/ID/AU-NZ-001). We selected a 12 374

plot subset of these data that were appropriate to extend

the original classification. Criteria for inclusion were (1)

for permanent plots only the most recent measurement

was retained; (2) the plot location was recorded to

within 100 m; (3) species abundance was recorded with

comparable tier heights and cover class scales to the

LUCAS data; (4) plots were not related to exclosures or

other experimental treatments and; (5) woody species

had total cover across the plot of >20% or were present

in height tiers >5 m (corresponding to the LCDB v1

mapping criteria).

Taxonomic changes in species names represent a major

challenge when combining data sets collected over differ-

ent time periods and by different people (Chytrý & Rafa-

jová 2003; Franz & Peet 2009; Jansen & Dengler 2010). To

address this issue: (1) taxa that had been identified to the

subspecies or variety level were aggregated up to the spe-

cies level; (2) homotypic synonyms were identified and

the current name was applied based upon Ngā Tipu o

Aotearoa, the New Zealand Plants database http://nzflora.

landcareresearch.co.nz/ and; (3) where we could identify

names that had been applied to both narrow and broad

taxonomic concepts, we associated the broadest concept

with the name.

Cover scores within each height tier were converted

to the midpoint of the percentage cover range for that

cover class, and summed across tiers (e.g. Wiser et al.

2002). This generated an importance value reflecting the

volume occupied by each species rather than its pro-

jected cover, and corresponded with that used in the ori-

ginal classification of the LUCAS plots. Resemblance

between plots was defined using the Chord distance

(Orlóci 1967).

Noise Clustering fuzzy classificationmodel

Noise Clustering (NC; Dave 1991) is a modification of the

well-known fuzzy clustering algorithm Fuzzy C-means

(FCM; Bezdek 1981). For the definition of vegetation

types, NC represents a conceptual improvement over

FCM because it allows plot records that should be consid-

ered outliers to be recognized (De Cáceres et al. 2010).

NC identifies outliers by considering an additional class,

called the ‘Noise’ class. The effect of considering the

Noise class is that it captures objects that lie further than

a pre-specified distance d from all the centroids of the

‘true’ clusters. The d parameter should be set to different

values depending on the degree of resolution of the clas-

sification analysis (i.e. the level of abstraction of vegeta-

tion units) and how the distance between plots is

defined.

To extend the applicability of the framework presented

in De Cáceres et al. (2010), we suggest identifying three

different types of plot records using the rules given in

Table 1. The proportion of plots in each category will

change depending on the values of the two NC parameters,

the distance to the Noise class (d) and the fuzziness coeffi-

cient (m). Larger values of m will lead to more plot records

falling in the category ‘transitional’, whereas larger values

of dwill decrease the amount of plot records falling in cate-

gory ‘unassigned’. Clearly, one would like to avoid too few

plots ‘clearly assigned to a type’. However, if m is set too

low (i.e. too close to 1) and d is too large, the advantages of

NC over K-means or Fuzzy C-means are lost (De Cáceres

et al. 2010). In this study we set the fuzziness coefficient to

a rather low value, m = 1.1, because we expected many

transitional plot records. Following preliminary results, the

distance to the Noise class was set to d = 0.83 for analyses

at the alliance level and d = 0.75 for analyses at the associ-

ation level.
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Casting the original classification into the NC framework

The original classification of the LUCAS plot records had

been obtained using the relativized Manhattan distance

(Faith et al. 1987; also referred to as Sørensen’s dissimilar-

ity index) and b-flexible hierarchical clustering (Wiser

et al. 2011). To cast the original alliance classification

obtained into the new NC framework we first calculated

the cluster centroids in the space of the Chord distance and

then used the NCmembership rule for alliances (d = 0.83)

to determine how the assignment of the plot records was

affected by the clustering model change. After casting in

the NC model, some plot records could be considered

transitional, others as outliers or even classified into a dif-

ferent type. Such changes could alter some types to the

extent of having too few plot records for an adequate defi-

nition. A cluster may exhibit a large variance, which, in

combination with the low number of plot records assigned

to it, indicates that the cluster is defined based on a very

sparse region of the multivariate space. We used the fol-

lowing definition of variance for fuzzy clusters:

FVari ¼
Xn

j¼1
e2iju

m
ij

�Xn

j¼1
umij ð1Þ

where eij is the distance from the object j to the centroid of

cluster i, uij is the membership of object j to cluster i and m

is the fuzziness coefficient. For those original alliances that,

after casting, included fewer than or equal to 20 plot

records and whose cluster variance was above 0.6, we con-

cluded that they lacked sufficient plot records to properly

represent their part of the vegetation gradient and

excluded them from further analyses.

Stratification of the NVS data set

Because data in the NVS databank have been compiled

frommany independently conceived projects, plots are dis-

tributed unevenly across geographic, environmental and

compositional gradients and sample different parts of these

gradients with different levels of intensity and

completeness. We stratified the NVS plot data set with the

aim of producing a data set capturing as wide a range of

compositional variation as possible while avoiding geo-

graphic biases. To achieve this we extended the approach

of Lengyel et al. (2011). We first constructed a set of geo-

graphical grids with points located in arrays at 2-, 4-, 6-, 8-

and 10-km intervals across New Zealand. For each grid, we

then determined the cell within which each plot was

located. We defined the number of plot records required

from a given cell as a truncated linear function of the b-
diversity of that cell (Fig. 1), whichwe defined as the over-

all compositional variation of the plot records within the

cell (Legendre et al. 2005). Truncation was used to ensure

a minimum number of required plot records per cell. For

those grid cells where the number of plot records available

exceeded the number required, we conducted a heteroge-

neity-constrained resampling of the plot set (Lengyel et al.

2011). Otherwise, all plot records were retained. The pro-

cedure was repeated using all combinations of the different

grid cell sizes and different coefficients for the relationship

between the b-diversity of the cell and the required num-

ber of plots (Fig. 1). To determine an appropriate combina-

tion of grid cell size and b-diversity coefficient, we required

the total number of plot records selected to be at least 75%

of the required plot records. This ensured that the composi-

tional variation within and among grid cells was ade-

quately represented. Moreover, we required the

stratification to retain between 25% and 45% of all plot

records. Among the combinations that met both criteria,

we chose the one with the smallest grid cell size and largest

b-diversity coefficient. Finally, we created a combined data

table, including both the 1177 LUCAS plots and the set of

stratified NVS plots, to be used in subsequent analyses.

Clustering analyses

At the alliance level, our aim was to extend the original

classification by defining new alliances. Initially, we had to

determine which plot records could be used to define new

alliances. To achieve this, we used the NC membership

rules for alliances (d = 0.83) to calculate the membership

Table 1. Typology of plot records determined on the basis of their fuzzy membership in the NCmodel.

Plot record type Definition

Clearly assigned in a type Plot records having fuzzy membership � 0.5 in a vegetation type form the ‘core definition’ of that type; these plots

are those used to characterize the type (e.g. to calculate constancy and fidelity values)

Unassigned Plot records having fuzzy membership � 0.5 in the Noise class indicate vegetation patterns ‘not represented’ in the current

classification scheme (i.e. outliers) and, where sufficient data are available, may be used to define new vegetation types

Transitional Plot records whose assignments are ambiguous (i.e. with fuzzy membership <0.5 for all types, including the Noise class)

are considered ‘transitional’ and are excluded from the characterization of vegetation types. These plot records may

be useful, however, to map transitions between vegetation types
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of all the plot records in the combined data set (LUCAS and

stratified NVS) to the original alliances, and we designated

those plot records whose membership to the Noise class

was higher than 0.5 as ‘unassigned’ (Table 1). We applied

the Noise clustering algorithm to this set of unassigned plot

records to define from one to 25 new clusters. In all these

executions of the NC algorithm, the centroids of the

accepted original alliances were used as fixed elements so

that the newly defined alliances would be as distinct as

possible from the originals (De Cáceres et al. 2010). After

defining the new clusters, we re-calculated the member-

ship of all plot records in the combined data set. All these

analytical steps are summarized in a workflow diagram

provided in Appendix S2.

We also aimed to define vegetation types at a lower level

of abstraction (i.e. a finer level of resolution) than the pre-

vious alliances. We defined associations using all the plot

records in the combined data set. In this case, we set the

distance to the Noise class to d = 0.75, following De

Cáceres et al. (2010). The NC algorithmwas used to obtain

fuzzy classifications from two to 100 clusters.

To relate the two levels of abstraction, we defined the

fuzzy membership of an association into an alliance by

assessing the proportion of plot records assigned to the

association that were also assigned to the alliance. Let uij be

the membership value of plot record j into association i,

and vkj be the membership value of plot record j into alli-

ance k. The membership of association i into alliance k,wki,

was calculated as (see Appendix S1 for details):

wki ¼
Xn

j¼1
uijvkj

�Xn

j¼1
uij ð2Þ

The fuzzy membership of an association into the Noise

class was calculated as one minus the sum of memberships

to the true alliances.

Deciding on the number of alliances and associations

We developed several evaluation methods to guide our

choice of the number of new alliances and associations to

recognize. First, for each number of alliances or associa-

tions, we calculated the proportion of plots in each of the

categories of Table 1. When the number of clusters

increases, the number of ‘unassigned’ plot records should

decrease, but these plot records may become ‘transitional’;

our goal was to maximize the number of plots ‘clearly

assigned’. Second, for each number of alliances, we deter-

mined how many new alliances did not comply with the

acceptance criteria used for the original alliances (i.e. had

fewer than or equal to 20 plot records and a cluster vari-

ance higher than 0.6). Similarly, we required associations

to be defined by ten or more plot records and to have a

cluster variance � 0.5.

The NC algorithm can leave large parts of the multivari-

ate space in the Noise class. To ensure that the multivariate

space spanned by associations and alliances was similar,

we calculated two additional statistics for each combina-

tion of number of associations and number of alliances.

First, we counted the number of associations having � 20

plot records and high membership (>0.5) to the Noise class

when assigned at the alliance level. If many of the plot

records of an association are assigned to the Noise class in

the alliance-level analysis, the multivariate space spanned

by associations is larger than that spanned by alliances.

Since, however, we allowed associations to have fewer

numbers of plots than alliances (i.e. 10 vs 20), associations

could also have high membership to the Noise class when

there were insufficient plots to define the corresponding

alliance. Therefore, we allowed associations to belong to

the Noise class if they comprised fewer than 20 plot

records. Second, we counted the number of alliances with

no component associations. We first determined, for each

association, which was the closest true alliance (i.e. the

one for which the association showed highest member-

ship); then we counted the number of alliances without

associations. If an alliance receives no associations, this

indicates that the region of the multivariate space spanned

by alliances is larger than that spanned by associations.

Final assignments and characterization of vegetation

types

We used the NC membership rules for alliances (d = 0.83)

and associations (d = 0.75) to obtain the membership of

the NVS plot records that had been discarded by the
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Fig. 1. Truncated linear relationship between the variation in species

composition (i.e. b-diversity) of grid cells and the number of plots needed

to be resampled. Different slope coefficients (f) are displayed.
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stratification process into the final alliances and associa-

tions. Clearly assigned plots were used to determine the

characteristics of the newly defined vegetation types. For

each type, we assessed the altitudinal range, geographical

extent, mean species richness and the mean percentage of

exotic species. The geographic extent was obtained by cal-

culating the proportion of the 1177 LUCAS plots that were

assigned to the type relative to the total area of 8.9 million

ha mapped as forest or shrubland by LCDB.

Recognizing known rare forest types

We used the New Zealand Forest Class Maps (NZFCM;

New Zealand Forest Service 1971–1990) to identify a selec-

tion of forest types having a spatial extent that was too

small to be defined by Wiser et al. (2011). We then tested

whether our approach allowed such rare types to be

defined. From the 1950s, Forest Class Maps were compiled

at a scale of 1:250 000 (NZ Forest Service Mapping Series

6), and provided national coverage (excluding Fiordland)

of 18 forest classes. NZFCM types that did not correspond

to any of the alliances described in Wiser et al. (2011)

include Kauri, Kauri–Softwood–Hardwoods–Beeches,

Rimu–Taraire–Tawa, and Taraire–Tawa. These types had

mapped extents ranging from 2722 to 40 486 ha, whereas

the most narrowly distributed alliances of Wiser et al.

(2011) had extents of 144 000 ha. Hereafter these types

will be described as Agathis australis, Agathis australis –

Softwood–Hardwoods–Nothofagus, Dacrydium cupressinum –

Beilschmiedia tarairi – B. tawa, and Beilschmiedia

tarairi – B. tawa forests, respectively. To test the recognition

of these NZFCM types in the new classification we exam-

ined the occurrence and dominance of nominal taxa

within our newly defined vegetation types.

Characterizing plots classed as outliers

The NVS plots are primarily located on public land; as such

they are concentrated in montane areas and under sam-

pled lowland areas. Within forests, geographic coverage of

plots is widespread, but uneven, with some areas better

represented than others. Successional shrublands are also

poorly represented (Wiser et al. 2001). Our expectation is

that plot data in such areas and ecosystems will be insuffi-

cient to define vegetation types, resulting in more plot

records being assigned to the Noise class. To determine if

this is the case, we used the Wilcoxon rank sum test to

compare the altitude andmean top height of plots assigned

to the Noise class to those that were not (Table 1). To

determine whether successional shrublands were overrep-

resented in the Noise class compared to other kinds of

shrublands (e.g. sub-alpine) we focused on the subset of

plots withmean top height below 6 m (followingMcGlone

et al. 2010) and used aWilcoxon rank sum test to compare

the mean percentage of exotic species (early successional

shrublands are frequently highly invaded) of plots assigned

to the Noise class to those that were not. Finally, we had

the more general expectation that where compositional

gradients had been inadequately sampled, using our crite-

ria derived from the truncated linear function of b-diver-
sity, more plots would be assigned to the Noise class. We

tested this by comparing the ratio of NVS plots available to

those required for each grid cell with the proportion of

plots assigned to the Noise class in that cell using Spearman

rank correlation. Only the 5751 plots used to derive the

classification were used in this analysis.

Results

Consequences of casting original classification into NC

framework

Casting the original classification into the NC fuzzy classifi-

cation framework had significant consequences. First,

switching from Manhattan to Chord distance produced

important changes in the dissimilarity between pairs of

individual plot records, although the distances between

alliance centroids were much less modified (Appendix S3).

Second, applying the NC alliance membership rule

resulted in some changes in plot membership of the origi-

nal alliances (Appendix S4). Third, seven original alliances

(mostly successional shrublands and forests) were poorly

defined according to our validation criteria (Fig. 2) and

were excluded from subsequent analyses. The remaining

17 original alliances were used as fixed elements in the def-

inition of new alliances.

Reducing geographic and compositional bias from the

NVS phytosociological data

The application of our criteria for stratification led to two

potentially suitable combinations of grid cell size and b-
diversity coefficient (Table 2). Among them, we chose a

stratification using a grid point interval size of 8 km (i.e.

grid cell area of 64 km2) and a b-diversity coefficient of 20,

and this resulted in a selection of 4574 plots (37.0% of the

original data set and 75.2% of the plots required to ade-

quately represent b-diversity). Merging the stratified NVS

data set and the LUCAS data set yielded a data set contain-

ing 5751 plot records and 1930 species (1237 species in

common, 427 species in NVS that do not appear in LUCAS

and 266 species in LUCAS that do not appear in NVS).

Cluster analysis results

When applying the NC membership rule for the

provisional assignment of the 5751 plot records, 1771
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(30.8%) were left unassigned. These plots were used to

create classifications ranging from c = 17 + 1 = 18 to

c = 17 + 25 = 42 alliances. We calculated evaluation sta-

tistics after reassigning the remaining 3980 plot records.

Beyond 31 (=17 + 14) alliances the proportion of clearly

assigned plots did not increase and the reductions observed

from the Noise class went to increasing the number of

transitional plots (Fig. 3a). Examining the number of alli-

ances that had low membership and high cluster variance

at the same time (Fig. 3b), we concluded that the maxi-

mum number of alliances to be defined should be 31

(=17 + 14). At the association level, the changes in the

proportion of plots belonging to categories of Table 1 indi-

cated that more than 40 associations should be defined

(Fig. 3c). Associations with high cluster variance (>0.5)
appeared even with low numbers of associations. In con-

trast, associations with low numbers of members (<10)
only appeared after 58 clusters (Fig. 3d).

Assignment of associations into alliances proved to be

useful to guide the decision of the final number of clusters

to define at both levels. First, we observed that for between

24 and 29 alliances the number of associations should be

<80 in order to avoid associations with � 20 plot records

having high membership in the Noise class (Fig. 4a). For

more than 29 alliances the number of associations should

be at least 80 to avoid alliances with no component associ-

ations (Fig. 4b). Finally, we decided to retain 29 (=17
original + 12 new) alliances and 79 associations, because,

although we wanted to define as many valid vegetation

types as possible, 30 or 31 alliances would lead to some alli-

ances having no component associations and a larger

number of associations would lead to some of them being

invalid or not being related to any recognized alliance.

When the assignment of associations into alliances is cate-

gorized (following Table 1), there are 46 associations

clearly assigned to one alliance, four associations assigned

to the Noise class, and 29 transitional associations (i.e.

between different alliances or between alliances and the

Noise class).

Final assignment of all plot records

Across all plot records (i.e. stratified NVS + LUCAS and the

remaining 7800 NVS plot records), 53.2% were clearly

assigned to the original alliances and 9.5% were clearly

assigned to the new ones (Table 3). That the portion of plot

records clearly assigned to original alliances was much

lower for the stratified NVS data set (39.8%) than for the

LUCAS data set (60.3%) supports our premise that atypical

plant communities were not well sampled with the grid-

based sampling of the 1177 LUCAS plots. Around 25.5%

of the plot records were considered transitional at the alli-

ance level, and 11.9% were left unassigned (i.e. assigned

to the Noise class). In comparison, at the association level

fewer plot records were considered transitional, while

more of them fell into the Noise class (Table 3).

Characterization of the newly defined vegetation types

Wewere able to define 12 new alliances, having estimated

extents ranging from <7562 ha to 120 986 ha (Table 4);

all of these were too narrowly distributed to be defined by

the original classification based on 1177 plots, where the

most narrowly distributed alliance had an extent of

144 000 ha (Wiser et al. 2011). Six new narrowly distrib-

uted shrubland alliances were defined, whereas only one

that is broadly distributed (extent of 204 163 ha) was

retained from the original classification (Discaria toumatou –

Coprosma propinqua –Anthoxanthum odoratum – Dactylis

glomerata shrubland). Of these, five predominantly occur

below 1000 m in landscapes that would have supported

Table 2. Plot data sets resulting from geographical and environmental re-

sampling of National Vegetation Survey (NVS) data at different grid cell

sizes and different slope coefficients for the linear function of b-diversity

(f).

f Grid cell size (km2)

4 16 36 64 100

5 69.6/58.4 43.0/65.3 30.8/68.8 24.3/71.6 20.5/75.1

10 70.7/58.8 44.2/65.9 32.2/69.6 25.7/72.4 22.0/76.2

20 84.0/59.4 59.7/69.4 45.5/72.8 37.0/75.2 32.4/77.8

30 90.6/54.1 72.0/66.4 56.2/69.6 46.7/72.1 41.2/73.7

40 93.3/48.3 80.0/61.2 64.2/64.7 54.2/67.4 48.2/68.5

Left values indicate the percentage of the total number of NVS plot records

(i.e. 12 374); right values indicate the percentage of the number of plot

records required to represent b-diversity in each case. Values in bold indi-

cate compliance with stratification criteria.
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forests in pre-human times, and two [Ulex europaeus –

Cordyline australis shrubland and (Kunzea ericoides)/Coprosma

rhamnoides/Dactylis glomerata – Anthoxanthum odoratum suc-

cessional shrubland] have both particularly high represen-

tation of exotic species (Table 4) and exotics included in

the nominal species (i.e. the nitrogen-fixing shrub Ulex

europaeus and the turf-forming grasses Dactylis glomerata

and Anthoxanthum odoratum). Of note is how much more

narrowly distributed shrubland alliances tend to be than

forest alliances (shrubland alliances range from <7562 to
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204 163 ha, median = 60 493 ha, whereas forest alliances

range from 15 123 to 574 681 ha, median = 241 970 ha).

We defined six new forest alliances (Table 4). Of these,

three are classed as Broad-leaved-Podocarp forest, one as

Podocarp forest (grading into sub-alpine shrubland at high

elevations) and two as Nothofagus forest. The most nar-

rowly distributed Nothofagus alliance is noteworthy in

being dominated by N. truncata; none of the alliances

defined byWiser et al. (2011) were dominated by this spe-

cies, which is the most narrowly distributed of all the NZ

Nothofagus species (Wardle 1984). We also recognized a

new, very rare (estimated extent 15 123 ha) forest alli-

ance, the Prumnopitys taxifolia/Melicytus ramiflorus – Myrsine

australis forest alliance, which is primarily restricted to frag-

mented locations on the South Island east coast, but was

most likely more extensively distributed before human set-

tlement (Moar 2008). This community was only briefly

described under ‘low-altitude conifer broad-leaf forest’ by

Table 3. Final assignment results at the alliance and association levels.

LUCAS Stratified NVS LUCAS + Stratified NVS Remaining NVS All plot records

Total no. plots 1177 4574 5751 7800 13 551

Alliance level (%)

Assigned 784 (66.6) 2330 (50.9) 3114 (54.1) 5378 (68.9) 8492 (62.7)

Original alliances 710 (60.3) 1819 (39.8) 2529 (44.0) 4674 (59.9) 7203 (53.2)

New alliances 74 (6.3) 511 (11.2) 585 (10.2) 704 (9.0) 1289 (9.5)

Transitional 236 (20.1) 1279 (28.0) 1515 (26.3) 1934 (24.8) 3449 (25.5)

Unassigned 157 (13.3) 965 (21.1) 1122 (19.5) 488 (6.3) 1610 (11.9)

Association level (%)

Assigned 569 (48.3) 2413 (52.8) 2982 (51.9) 5440 (69.7) 8422 (62.2)

Transitional 261 (22.2) 877 (19.2) 1138 (19.8) 1625 (20.8) 2763 (20.4)

Unassigned 347 (29.5) 1284 (28.1) 1631 (28.4) 735 (9.4) 2366 (17.5)

Columns indicate assignment results for different sets of plot records; values in each column are the number of plots assigned followed by the percentage

of the set that this value represents.

Table 4. Characterization of new alliances.

Alliance Distribution Altitude

range (m)

Extent

(ha)

Mean

species

richness

Mean%

exotic

No.

associations

defined

Shrublands

Cordyline australis tall shrubland SI 60–300 <7562 3 6 1

Ulex europaeus – Cordyline australis shrubland NI, SI 2–570 15 123 6 39 2

Dracophyllum uniflorum/Gaultheria crassa – Poa colensoi –

Festuca novae-zelandiaemontane shrubland

SI 730–1360 60 493 37 5 1

Kunzea ericoides/(Coprosma rhamnoides –

Leptecophylla juniperina) shrubland

NI, SI 20–1010 120 986 27 14 2

(Kunzea ericoides)/Coprosma rhamnoides/Dactylis glomerata –

Anthoxanthum odoratum successional shrubland

NI, SI 50–700 75 616 45 46 1

Leptospermum scoparium shrubland NI, SI, Stewart 0–1020 37 808 20 3 2

Nothofagus Forests

Nothofagus menziesii/Hoheria glabrata –Myrsine divaricata –

Coprosma ciliata/Polystichum vestitummontane forest

SI 460–1260 75 616 28 <1 1

Nothofagus truncata –Weinmannia racemosa (N. menziesii)/

Leucopogon fasciculatus forest

NI, SI 50–990 68 054 18 <1 4

Podocarp Forest

Dracophyllum traversii – D. longifolium – Coprosma pseudocuneata –

Archeria traversii low forest and sub-alpine shrubland

SI 740–1210 22 685 40 <1 2

Broad-Leaved-Podocarp Forest (including kauri)

Pseudowintera colorata – Fuchsia excorticata – Griselinia littoralis/

Polystichum vestitum forest

NI, SI 0–900 45 370 39 2 2

Prumnopitys taxifolia/Melicytus ramiflorus –Myrsine australis forest SI 20–685 15 123 39 7 1

Weinmannia silvicola – Beilschmiedia tawa /Freycinetia banksii forest NI 30–640 22 685 50 0 1

SI, South Island; NI, North Island; Stewart, Stewart Island.
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Wardle (1991) and was subsumed under the more exten-

sive type ‘Rimu-Matai-Hardwoods’ by the NZFCM. New

alliances and their component associations are described in

Appendix S5, and component associations of original alli-

ances are listed in Appendix S6.

Representation of known rare forest types

As the 1177 plot LUCAS data set included only 11 and 26

plots containing the narrowly distributed Agathis australis

and Beilschmiedia tarairi respectively, alliances where these

tree species were dominant could not be defined. In

contrast, the 5751 plot LUCAS + stratified NVS data set

included 51 and 88 plots where these species occurred,

respectively. This allowed theWeinmannia silvicola – Beilsch-

miedia tawa/Freycinetia banksii forest alliance and the

Weinmannia silvicola–Beilschmiedia tarairi–Beilschmiedia

tawa – (Dysoxlyum spectabile–Agathis australis)/Freycinetia

banksii–Dicksonia squarrosa forest association to be defined

(Table 4, Appendices S5 and S6). This alliance and associa-

tion includes stands that correspond to the concepts for

two of the four rare NZFCM classes – Dacrydium cupressinum

– Beilschmiedia tarairi – B. tawa, and Beilschmiedia tarairi –

B. tawa forest and stands of the NZFCM Agathis australis

class on the more mature end of the spectrum, but did not

segregate them from each other. The Weinmannia silvicola –

(Agathis australis)/Leptospermum scoparium – Knightia excelsa/

Leucopogon fasciculatus – Blechnum novae-zealandiae forest asso-

ciation defines stands of theAgathis australis class on themore

recently disturbed end of the spectrum, as evidenced by the

abundance of post-disturbance colonizing trees such as

Leptospermum scoparium andKnightia excelsa.

We did not describe any new alliances that correspond

to the NZFCM class Agathis australis – Softwood–Hardwoods–

Nothofagus. Our data set included only two plots where

Agathis and Nothofagus co-occur; both were sufficiently dis-

tinct in composition to be assigned to the alliance-level

Noise class.

Characterizing plots classed as outliers

Our expectation that in grid cells where compositional gra-

dients had been inadequately sampled more plots would

be assigned to the Noise class was met, although the rela-

tionship was weak (Spearman rank correlation between

the ratio of NVS plots available to those required for each

64-km2 grid cell and the proportion of plots assigned to the

Noise class in that cell = �0.16, P < 0.00001). As we also

expected, plots assigned to the Noise class, at both the

alliance and association level, tended to occur at lower

elevations (mean elevation = 547 m vs 468 m, for

alliance-level non-Noise and Noise class plots, respectively,

P � 0.0001, and 551 m vs 480 m for the analogous

association-level plots, P � 0.0001). They were also

shorter in stature (mean canopy height = 16.2 m vs 9.1 m

for alliance-level non-Noise and Noise class plots, respec-

tively, P � 0.0001, and 16.9 m vs 9.4 m for the analogous

association-level plots, P � 0.0001). When we examined

short-statured stands only, plots with a higher proportion

of exotics also tended to be assigned to the Noise class

(mean percentage exotic = 13.7 vs 14.3 for alliance-level

non-Noise and Noise class plots, respectively, P = 0.03,

and 10.4 and 15.6 for the analogous association-level plots,

P = 0.0002).

Discussion

The on-going exploration of the vegetation continuum,

both in space and time, turns any given classification of

vegetation into a set of conventions that may need to be

modified or extended (De Cáceres & Wiser 2012). In the

traditional Braun-Blanquet method, expert phytosociolo-

gists dealt with this need by incorporating their knowledge

on diagnostic species of previously defined types (either

belonging to the same or different levels of abstraction) in

the classification process of a particular relevé table. Fol-

lowing and extending the approach presented by De

Cáceres et al. (2010), we have illustrated here how this

need to extend existing classifications can be incorporated

into numerical classification in a way that is formalized

and repeatable. Overall, our approach illustrates the appli-

cation of a fuzzy classification framework at a national

scale, and can serve as a model for others wishing to

extend and update their regional/national vegetation

classifications.

Casting an existing classification into a new

classification framework

When using two clustering methods on the same set of

plot records, parts of the continuum will be similarly

clustered while others will not. A similar situation

occurs when casting the classification obtained from one

method into a new classification framework. Even if one

tries to preserve the original classification as much as

possible, some of the original types may be poorly

defined according to the way clusters are defined in the

new framework, as we observed for seven of the 24

alliances originally defined by Wiser et al. (2011). Here,

we assessed the robustness of the classification to

changes in the clustering framework by focusing on the

consequences for the validity of specific clusters

(alliances). While we defined invalid vegetation types as

those having a small number of members and high

cluster dispersion, other methods can be employed to

assess the validity of previously defined vegetation types
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when changing the clustering framework (e.g. Feoli

et al. 2006). In general, the validation of vegetation

classifications is an area that deserves further research.

For example, recent progress has been made to assess

the stability of classification results to sampling varia-

tions (Tichý et al. 2011).

Sampling and the extension of vegetation classifications

An important issue reflecting the provisional character of

classifications is the need to define vegetation types on

parts of the continuum that so far have not been described

because of the sampling design of earlier studies. Wiser

et al. (2011) noted that their original classification based

on objectively sampled plots failed to capture some previ-

ously documented, iconic forest types because of their rar-

ity in the landscape.

An appropriate sampling design is critical to adequately

represent compositional combinations that are geographi-

cally rare. By applying a geographic and compositional

stratification approach to the NVS database, the proportion

of plot records that represent compositionally rare combi-

nations was decidedly increased in our resampled data set.

This allowed us to define 12 new alliances for species

assemblages having extents smaller than 125 000 ha.

Because of the relatively small size of the LUCAS data set,

the original classification was unable to partition alliances

into associations, as is particularly desirable at the regional

scale. In our extension analysis, we were able to recognize

more than one association (and as many as seven) within

14 of the 17 original alliances and seven of the 12 new

alliances.

Our approach allowed us to define alliances or associa-

tions that corresponded to three of the four rare forest clas-

ses identified by the NZFCM, although our community

concepts were either broader or narrower than those of

the NZFCM. This demonstrates that when data are avail-

able, our approach can allow rare vegetation types to be

defined. Further, the presence of the narrowly distributed

Agathis australis and Beilschmiedia tarairi, are characteristic

of these rare NZFCM classes, in the unassigned plots

(A. australis occurs in 46 and 73 of the alliance and associa-

tion Noise classes respectively, B. tarairi occurs in 49 and

91), suggests that withmore data further rare types may be

able to be described.

Although large, our data set did not have enough plots

where Agathis co-occurs with Nothofagus to allow us to

describe an alliance or association corresponding to the

NZFCM Agathis australis – Softwood–Hardwoods–Nothofagus

class. We have identified 101 plots in the NVS databank

where these two species co-occur, but unfortunately these

plots use tier classes or abundance measures that were

incompatible with the original classification. How to make

different abundance measures compatible for classification

purposes is a challenge that may be worthwhile to explore

in future research.

Dealingwith plot records that are transitional or remain

unclassified

A second consequence of stratifying the data set to increase

the proportion of compositionally rare species assemblages

was to increase the number of plot records that were either

transitional or left unassigned (Table 3). Although vegeta-

tion scientists accept the vegetation continuum, there is

often a need to put every plot observation into a known

vegetation type (e.g. Kočı́ et al. 2003). Adopting a frame-

work where plot records can be transitional or even left

unclassified may be regarded initially as impractical. How-

ever, it is desirable to exclude transitions and unassigned

plots from the set of plots used to define vegetation types,

because this ensures a more distinct characterization of

those types (e.g. number and identity of diagnostic species,

distinct environmental and geographical range). Since

many existing quantitative classification algorithms

require that all plots in the data set be assigned to a type,

the analyst has to make any decisions about exclusion/

inclusion of plots having unusual composition before the

analysis is begun. Noise clustering provides a way to iden-

tify such outliers and exclude them from the classification,

thus making the defined types more robust and cohesive

in composition. Moreover, if a single answer is desired,

transitional or unassigned plot records may be a posteriori

assigned to the closest type. Despite the advantage of

allowing a more distinct definition of vegetation types,

acknowledging transitional and unassigned plot records

creates the additional task of determining why those plots

were not clearly assigned.

Using outliers to direct future enquiry

Plot records that are left unassigned represent species

assemblages that are uncommon in the study area. Allow-

ing plots to remain unassigned is important because it

retains the option to extend the current classification by

defining new types as new data become available. Inspect-

ing the characteristics of unassigned plots may indicate the

parts of the vegetation continuum for which additional

data are required. Our stratification approach can be used

to determine which locations (here 64-km2 grid cells)

appear to be under-sampled relative to their apparent com-

positional variation. Further, our analysis confirmed our

expectations that outliers tend to occur at lower altitudes

or in shrublands that are often successional. Other results

provide further evidence that shrubland vegetation types

are challenging to define. Of the seven alliances that were
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poorly defined according to the new analytical framework,

five were shrublands. Luckily, with the addition of more

plot data some of their plots were assigned to more compo-

sitionally cohesive new shrubland alliances. The inherent

difficulty of cohesively defining shrubland types is further

reiterated in that three of the four associations assigned to

the alliance-level Noise class were shrublands.

Why was it so difficult for us to define shrubland com-

munity types? The most proximate explanation is that

such ecosystems are under-sampled relative to their spatial

extent. Indeed although indigenous shrublands are esti-

mated to cover 30% of the area of woody indigenous vege-

tation in New Zealand (Thompson et al. 2004) only 13%

of the plots in our stratified data set sampled shrublands.

Certainly there is an urgent need for more plot data to be

collected or gathered to allow shrubland types to be more

comprehensively defined. Nevertheless, NZ shrubland

communities may be inherently more challenging to

define than forest communities. That the shrubland alli-

ances that we did define are estimated to bemore narrowly

distributed than forest alliances implies that the former

exhibit more compositional turnover between locations.

We suggest two potential explanations for this. Island

areas, such as New Zealand, tend to have a disproportion-

ate number of shorter (i.e. <15 m) arborescent species

trees that have narrow ranges (McGlone et al. 2010). The

absence of wide-ranging, tall species from sub-alpine

shrublands ensures higher compositional turnover among

sub-alpine shrublands than among nearby forests. In suc-

cessional shrublands, where the native seral woody species

tend to have wide ranges (McGlone et al. 2010), composi-

tion may be inherently unpredictable from environmental

factors, and less repeated across geographic gradients

because site history, seed availability and on-going distur-

bance are the primary determinants of composition (Chris-

tensen & Peet 1984; Wardle 1991; Ozinga et al. 2005). In

regions, such as New Zealand, exotic invaders may be an

important component of woody successions, and these

invaders will differ in their residence times and the degree

to which they have established in suitable habitats. This is

further compounded when exotic invaders have novel

traits that alter successional trajectories (e.g. D’Antonio &

Vitousek 1992; Sullivan et al. 2007). Defining distinct

robust vegetation types in these cases may be a challenging

task.
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