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• Fast, repeatable and systematic moni-
toring at sub-decimeter spatial resolu-
tion

• R2 between drone imagery and field
spectroradiometric measurements over
0.9

• Multispectral imagery allows monitor-
ingmine wastes, restored soil and vege-
tation.

• A solution for easy detection of failing or
successful restoration actions

• Affordable equipment and protocol for
rigorous and non-conflictive mine
monitoring
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Open-pit mine is still an unavoidable activity but can become unsustainable without the restoration of degraded
sites. Monitoring the restoration after extractive activities is a legal requirement for mine companies and public
administrations in many countries, involving financial provisions for environmental liabilities. The objective of
this contribution is to present a rigorous, low-cost and easy-to-use application of Unmanned Aerial Systems
(UAS) for supporting opencast mining and restoration monitoring, complementing the inspections with very
high (b10 cm) spatial resolution multispectral imagery, and improving any restoration documentation with de-
tailed land cover maps. The potential of UAS as a tool to control restoration works is presented in a calcareous
quarry that has undergone different post-mining restoration actions in the last 20 years, representing 4 reclaimed
Keywords:
Mine restoration
Monitoring restoration
ican Society for Photogrammetry and Remote Sensing; DCSM, Digital Cast ShadowModel; DEM, Digital Elevation Model; DIM,
sor; DSM, Digital Surface Model; DTM, Digital Terrain Model; EVA, Ethylene-Vinyl Acetate; EXIF, Exchangeable Image File
nd Control Point; GIS, Geographical Information System; GNSS, Global Navigation Satellite System; GPS, Global Positioning

ighbor; LDCM, Landsat Data Continuity Mission; lidar, Light Detection and Ranging; MSAVI, Modified Soil Adjusted Vegetation
WI, Normalized Difference Water Index; NIR, near-infrared (spectral region); RED, red (spectral region); REF, reference; REG,
mote sensing; SAVI, Soil Adjusted Vegetation Index; TA, Training Area; TIN, Triangulated Irregular Network; TRA, Transit Area;
ehicle; VNIR, visible and near-infrared (spectral region); VA, Validation Area.

ró), V.Carabassa@creaf.uab.cat (V. Carabassa), Jaume.Balague@ctfc.cat (J. Balagué), Lluis.Brotons@ctfc.cat (L. Brotons),
b.cat (X. Pons).

. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2018.12.156&domain=pdf
https://doi.org/10.1016/j.scitotenv.2018.12.156
Xavier.Pons@uab.cat
https://doi.org/10.1016/j.scitotenv.2018.12.156
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


1603J.-C. Padró et al. / Science of the Total Environment 657 (2019) 1602–1614
stages. We used a small (b2 kg) drone equipped with a multispectral sensor, along with field spectroradiometer
measurements that were used to radiometrically correct the UAS sensor data. Imagery was processed with pho-
togrammetric and Remote Sensing and Geographical Information Systems software, resulting in spectral infor-
mation, vegetation and soil indices, structural information and land cover maps. Spectral data and land cover
classification, which were validated through ground-truth plots, aided in the detection and quantification of
minewaste dumping, bare soil and other land cover extension.Moreover, plant formations and vegetation devel-
opment were evaluated, allowing a quantitative, but at the same time visual and intuitive comparison with the
surrounding reference systems. The protocol resulting from this research constitutes a pipeline solution intended
for the implementation by public administrations and privates companies for precisely evaluating restoration dy-
namics in an expedientmanner at a very affordable budget. Furthermore, the proposed solution prevents subjec-
tive interpretations by providing objective data, which integrate new technologies at the service of scientists,
environmental managers and decision makers.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Drone
Unmanned Aerial System
UAS
UAV remote sensing
Multispectral imagery
1. Introduction

Severe ecosystem changes are the result of opencast mining activi-
ties, which affect the soil, vegetation, fauna, hydrology and landforms
(Drake et al., 2010). The restoration of degraded soils and human-
disrupted landscapes involves a large number of priorities (Ockendon
et al., 2018). Among them, post-mining restoration represents the spe-
cific challenge of creating ecological structures that become integrated
into the surrounding environment, which starts from “point zero”
(Hüttl and Weber, 2001). Mine wastes and rocky debris are common
initial substrate conditions, being necessary artificially replacing soil
(i.e. technosol) and introducing local vegetation by means of planting,
sowing and encroaching the surrounding vegetation to drive the resto-
ration process to pre-mining landscape conditions (Korjus et al., 2014).
Ecological engineering scientists assume that after intensive opencast
mining, the final soil conditions are usually extremely degraded thus
leading the restoration process to either fail or simply not begin
(Bradshaw, 1997). Consequently, the task of monitoring reclaimed
areas becomes a fundamental feature in any restoration process, as it
provides crucial information to environmental managers for those in-
volved in assessing the success of adopted techniques (DITR, 2016).
The objective of a restoration is to achieve a self-sustainable ecosystem
at the overall affected landscape (Elmqvist et al., 2003). Restoration of
opencast mines is regulated in most developed countries, and expected
to be also in the remaining ones. For instance, in the EuropeanUnionwe
can find different levels of legislation, the European (Directive 2006/21/
EC), member states (e.g. Spanish RD975/2009, German
Bundesberggesetz 1980) and regional governments (e.g. Catalan Law
12/1981), all of which require monitoring and periodically inspection
of mine restorations. Moreover, extractive companies are required to
provide a financial guarantee for environmental liabilities, which are
blocked by the administration to assure that the companies comply
with the regulations ensuring the proper restoration of the mined
areas. Altogether, not only public administrations are interested in up-
holding legal measures for land restoration, also private companies
want to recover the financial provision.

Environmental characterization, mapping and monitoring
(Thenkabail, 2015) is one of the first and most productive applications
of remote sensing (RS). The scientific use of environmental remote
sensing data has been evolving since the 1970s, when the first Landsat
satellite was put into orbit. The Landsat Data Continuity Mission
(LDCM) (NASA, 2018), which has been the standard-bearer of Earth re-
sources and environmental monitoring from space, uses sensors in the
solar [0.450 μm to 2.500 μm] and thermal [8 μm to 13 μm] regions of
the electromagnetic spectrum. The recent Sentinel-2 mission (ESA,
2015), which is represented by the Sentinel-2A and B platforms, is im-
proving the spatial, spectral and temporal resolution of the free avail-
able satellite acquisitions. The joint synergy of those Earth observation
programs is currently coordinated in the Global Earth Observation Sys-
tem of Systems (GEOSS). However, the Sentinel-2 spatial resolution (up
to 10 m) is not detailed enough to monitor slight land cover changes in
relatively small areas of interest, such as some opencast mine restora-
tions, despite some studies have been done combining Landsat imagery
and in-situ monitoring (e.g. Bonifazi et al., 2003). Alternatively, a much
more detailed spatial and spectral resolution can be reached with air-
borne optical sensors, such as the Airborne Hyperspectral Scanner,
which features 80 bands fromvisible to thermal regions, or the Compact
Airborne Spectrographic Imager 1500, which features 288 bands be-
tween 0.35 μm and 1050 μm, allowing sub-metric pixels at a standard
flight height of 3000 m above ground level (AGL). Light Detection and
Ranging (lidar) sensors can be effectively used to reconstruct the vege-
tation structure (Listopad et al., 2015) and classify land cover surfaces in
combinationwith optical imagery, but the cost of taking off a planewith
this expensive payload solely for the purpose of monitoring a mine res-
toration is ultimately not cost-effective.Moreover, satellite and airborne
optical imagery is often constrained by cloud cover conditions. On the
other hand, such conditions do not pose a problem for lidar or optical
sensors onboard Unmanned Aerial Systems (UAS or drones) when fly-
ing below the cloud cover thanks to their high sensitivity even when
only diffuse irradiance exists. It is important to note that in such condi-
tions, reflectance is much more Lambertian than under direct sunlight,
and incoming diffuse irradiance can be measured in-situ at the time of
the drone flight. A radiometric analysis ofmultispectral photogrammet-
ric imagery acquired in different illumination conditions can be found in
Markelin (2013). Then, the use of well-known remote sensing satellite
and aerial techniques, which can be adapted to the imagery provided
by multispectral optical sensors onboard low-weight drones (Sanders,
2017), can considerably facilitate the task of covering an area dimen-
sioned to the platform, in that a much higher spatial resolution can be
obtained with a low-cost revisit time and is not constricted to cloud
cover. With all these advantages, such a solution can prove more suit-
able for the operative goal of acquiring RS data in monitoring mine ex-
ploitations and their restoration.

Although the regulation of b25 kg UAS may vary in each country, in
most of them there are no major restrictions on their use in non-urban
areas, such as in opencast mine undergoing restorations; nevertheless
they complywith the regulations on flight height limitation and observ-
ing the security distance to airports, as recommended by the Interna-
tional Civil Aviation Organization (ICAO, 2011). Regulations aside, the
proliferation of low-cost and low-weight UAS as data acquisition tools
is rapidly promoting the transference of knowledge from the research
sphere to the productive economy, and vice versa. Many studies make
use of multispectral optical sensors onboard low-weight (b25 kg)
drones and apply remote sensing techniques for wide-ranging applica-
tions, such as the 3D reconstruction of cultural heritage sites (Eisenbeiss
and Zhang, 2006), identifying and evaluating climate-related diseases
(Yoo et al., 2017), precision agriculture (Díaz-Varela et al., 2015), topog-
raphy (Lucieer et al., 2014) or wildfire severity (Pla et al., 2017). Alto-
gether these studies focus intensely on space and time due to the
nature of the UAS platforms (fixed-wing or rotary-wing), which can

http://creativecommons.org/licenses/by-nc-nd/4.0/
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acquire images with ultra-high spatial resolution, usually from 1 cm to
10 cm depending on the flight height and the sensor instantaneous
field of view. The extraction activities sector is also very interested in
UAS remote sensing applications. When dealing with opencast mining
cases, we find that extractive companies are interested in 3Dquantifica-
tion of mineral resource volumes (Xu et al., 2015) or the geomorphic
characterization (Chen et al., 2015), while the environmental commu-
nity is mainly focused on monitoring water and soil pollution
(Capolupo et al., 2015). To the best known of the authors, there are no
applications of UAS imagery specifically designed for the “standardized”
monitoring of opencast mine restorations, a legal issue pointed out in
much of the environmental legislations and that involves public admin-
istrations, companies, technicians and wastes time and economic re-
sources (Minerals Council of Australia, 2015). The interaction of these
actors is susceptible to involve subjective appreciations of a given resto-
ration, so we propose a workflow for acquiring highly detailed imagery
to produce thematic maps and complement on-field evaluation with
objective cartographical evidences.

The current geometric theoretical basis of UAS remote sensing finds
its roots in digital photogrammetry and computer vision background
(Hartley and Zisserman, 2003; Granshaw and Fraser, 2015). Generally,
multiple overlapped photograms are acquired and a bundle block ad-
justment is performed using aero-triangulation techniques. Homolo-
gous points between adjacent photograms are automatically detected
by using computer vision techniques, which are further used as tie
points to fit the whole model, by forming a mosaic of the photograms
and reconstructing the surface with the stereo photogrammetric infor-
mation. There are two georeferencing methods mostly used in UAS im-
agery: direct georeferencing and indirect georeferencing. Direct
georeferencing is based on integrated navigation systems, which uses
Global Navigation Satellite Systems (GNSS), e.g. GPS receiver as well
as Inertial Measurement Unit (IMU) information to locate the camera
perspective center and estimate its orientation parameters at the acqui-
sition time (Skaloud et al., 2014; Rehak and Skaloud, 2017). In fact, the
quality and accuracy of the onboard GNSS and IMU are key factors for
proper direct georeferencing. In contrast, indirect georeferencing of
UAS imagery is based on Ground Control Points (GCP), scene locations
with well-known coordinates (Rumpler et al., 2014). GCP are com-
monly measured with static post-processed GNSS methods and
surrounded with a chessboard target that is visible in the UAS imagery.
Comparatively, indirect georeferencing is more time-consuming than
direct georeferencing, and the accuracy depends on the correct mea-
surement of GCP positions, the technician's skill in locating the refer-
ences in the imagery, and the number of GCPs, reaching pixel size
accuracies (Turner et al., 2014). A recent comparison of four UAS
georeferencing methods for environmental monitoring purposes can
be found in Padró et al. (2019).

The radiometric theoretical basis of optical multispectral remote
sensing in the visible and near infrared regions (VNIR), i.e. between
400 nm and 900 nm, is attained by measuring the spectral surface re-
flectance (ρλ) in order to be comparable when imagery is acquired on
different dates and/or by different sensors. Imagery is converted to ρλ
at pixel level; ρλ is computed as the amount of spectral radiance (Lλ)
(W·m−2·sr−1·μm−1) reflected by a surface located in a given pixel
with respect to the total spectral irradiance (Iλ) (W·m−2·μm−1) re-
ceived (Schaepmann-Strub et al., 2006). Satellite imagery is radiometri-
cally corrected according to one of the different existing approaches
(Kaufman and Sendra, 1988; Chavez, 1988; Pons et al., 2014; Vermote
et al., 2016, as examples), and can be validated by using field
spectroradiometric measurements as ground-truth (Padró et al.,
2017). Moreover, as the incoming irradiance is difficult to approximate
by modeling, it can be estimated empirically (Abdollahnejad et al.,
2018), and as the UAS sensor is usually located in a very low AGL alti-
tude (b120 m) the radiative transfer modeling has to be adapted or
even substituted by other approaches (Aasen et al., 2015). A common
approach for obtaining surface reflectance values from drone data
(Honkavaara et al., 2012; Iqbal et al., 2018) is the numerical fitting (usu-
ally an empirical line through reference targets) of UAS-acquired radi-
ometry and field spectroscopy data. Additionally, there are consumer
grade cameras with a Downwelling Light Sensor (DLS) that measures
the total incoming irradiance at-sensor level, which stores this informa-
tion in the EXIF file of each photogram and obtaining direct information
to calculate at-sensor reflectance. Nevertheless, as Hakala et al. (2018)
point out, the challenge in this method is that the upwards looking sen-
sor has to be horizontally stabilized, which is typically not the case
when using low-cost instruments.

The main objective of this research is to provide a new tool using
UAS that generates detailed, objective, exhaustive and rigorous cartog-
raphy of opencast mine restorations. Introducing of UAS for acquiring
imagery as a source to obtain data and produce digital maps is expected
to improve the diligence and objectiveness of inspections, and as such
could reduce disagreements between public administrations and pri-
vate companies. As a secondary goal, this research focuses on how, be-
sides the intrinsic interest in the detailed imagery for visual
inspections, UAS imagery can provide quantitative spatial information
about restoration failures or success in terms of monitoring the area
covered by vegetation,minewaste dumping or bare soil at different res-
toration stages.

2. Materials

2.1. Study area and restoration stages

The implementation for monitoring mine restorations using UAS
was carried out in Catalonia, Spain, where 483 mine exploitations
were documented in 2018 (GENCAT, 2018). We have developed the
presented workflow on an active calcareous sandstone quarry located
in central Catalonia (lat. 41° 41′ 35″N lon. 1° 49′ 43″E), with representa-
tive landforms corresponding to different stages of restoration, namely
from old restorations carried out N20 years ago to recent plantations.
By accessing the historic orthophotographs of 1957, 1984, 2000 and
2016 (ICGC, 2018a, 2018b), we can report that the land use of this
area before the mining activity was dominated by vineyards (1957),
which were abandoned and spontaneously forested by the encroach-
ment of autochthonous species (1984). This is a good example of the
transition forest theory (Mather and Needle, 1998) in Mediterranean
environments (Padró and Badia, 2017; Poyatos et al., 2003). In this
area, mining began in the mid-1980's, and hit its activity peak on the
2000's decade. The restoration stages consideredwere, from the present
to the past, T0 (0–5 years), T1 (5–10 years), T2 (10–15 years) and T3
(15–20 years); additionally, a non-disturbed area was taken as refer-
ence (REF), and a Transit Area (TRA) was masked to avoid a bias in
the quantification (Fig. 1).

The material extracted was calcareous sandstone, exploited trough
10 m × 10 m banks. Bank-berm was the common landform model,
resulting in steeped slopes. After a partial landform adaptation using
mining debris, the surface was covered by new topsoil. The topsoil
was a technosol, which was constructed using mine spoils and mineral
sludge from the tailing process and was mixed with a small amount of
previous topsoil stored for a long time. Organic amendments were
added in order to increase soil fertility. Specifically, anaerobically
digested sewage sludge was incorporated in a dose around 50 Mg/ha
in order to increase soil organic matter, P and N contents, and improve
soil aggregation. Revegetation measures consisted of sowing a mixture
of herbaceous seeds (mainly grasses and leguminous) and planting
local shrubs (mainly Rosmarinus officinalis) and trees (mainly Pinus
halepensis), at a mean density of about 400 seedlings ha−1. Vegetation
in restored areas presented different grades of development according
to the age of sowing and planting activities, which range from adult
trees and dense shrub cover in T3, to a dominant herbaceous cover in
T0. The reference system (REF, undisturbed area) is a Pinus halepensis
forest, with a dense shrub layer and a low herbaceous cover.



Fig. 1. Top left: Flight planned area and study area over the official local agency orthophotomap (ICGC, 2018a, 2018b). Bottom left: Restoration stages T0 (0–5 years), T1 (5–10 years), T2
(10–15 years) and T3 (15–20 years); non-altered area taken as reference (REF); Transit Area (TRA) masked to avoid bias in the quantification. Top right: Location maps. Bottom right:
Restoration landscape.
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The total dimension of the study areameasured at 64,386m2, which
comprised of T0 4364m2, T1 12,627m2, T2 16,638m2, T3 18,561m2, REF
8206 m2 and TRA 3990 m2. The planned flight (cf. Table S1 in the Sup-
plementary materials) covered an additional area to assure the com-
plete overlapping and preventing geometric distortions of the
marginal photograms of the block. Previous flights were performed in
mining activities to define a suitable flight altitude (90m AGL) that bal-
ances the need for covering a typical opencast area and using a high spa-
tial resolution product (b10 cm). These recommendations are in
accordance with other experiences made in land cover classification of
UAS imagery at different spatial resolutions (Ahmed et al., 2017).

It isworth noting that the season and the hour of the UAS data acqui-
sition are crucial parameters to consider. After testing ourmethod in all
four seasons and at different hours of the day, we suggest that for ac-
quiring imagery, in spring and summer are the best periods due to the
leaf presence of deciduous vegetation, and during the hours of solar af-
ternoon due to the high sun position, what minimizes shadows.

2.2. UAS sensor and platform

The optical sensor used on this study was a Parrot Sequoia (cf.
Table S2 in the Supplementary materials), which is a multispectral sen-
sor light enough to be embedded in b2 kg maximum take-off weight
platforms. This sensor has four spectral bands (green (GRE), red
(RED), red-edge (REG) and near infrared (NIR)), which are specifically
disposed to improve the detection of vegetation and its features. The
relative spectral response function (RSRF) is not provided by themanu-
facturer, and we assumed the Full Width Half Maximum (FWHM) pro-
vided in the specification sheet, by guessing the shape of theRSRF; other
sensors providing detailed RSRF allow a more detailed integration (e.g.
Padró et al., 2018). A detailed analysis of the Parrot Sequoia can be found
in Fernández-Guisuraga et al. (2018). The Parrot Sequoia includes a DLS
located at the top of the UAS, which registers the Sun total spectral irra-
diance at-sensor level and thus facilitates the automatic determination
of the at-sensor reflectance. The performance of the DLS of the Parrot
Sequoia was tested with in-situ reference targets, and finally at-sensor
reflectance was numerically fitted to surface reflectance
spectroradiometric measurements. The platform used was a DJI Phan-
tom III Advanced (DJI, 2018) quadcopter (cf. Table S3 in the Supplemen-
tary materials) due to its compatibility with Android and iOS systems,
fitness to the proposed procedures, low-cost, easy manageability, re-
duced dimensions, and capacity of embedding the multispectral sensor
that we used therein. The default optical sensor was substituted by the
Parrot Sequoia, which was mounted on the gimbal (Fig. 2).

2.3. Field spectroradiometer

The in-situ ground-truth reflectance was measured with an
OceanOptics USB2000+ portable field spectroradiometer
(OceanOptics, 2006) (Table S4 in the Supplementary materials).
USB2000+ widely covers the VNIR spectral range of the multispectral
UAS sensor commonly used. The physical magnitude measured with
the spectroradiometer is the spectral surface reflectance (ρλ), as ex-
plained in Pons et al. (2015) and Meroni and Colombo (2009). In
order to account for the variability of measurements, 100 readings
were obtained for each measurement and the overall data was statisti-
cally analyzed (mean, median, standard deviation, etc.) to evaluate its
coherence, whereby we synthesized 1 nm of spectral resolution signa-
ture of every given surface.

We used a set of 24 matt Ethylene-Vinyl Acetate (EVA) rubber
(foam) artificial targets of different colors (violet, blue, sky blue, green,
yellow, orange, pink, red, brown, grey and black) in order to have sev-
eral spectral reflectance references. A lower number of targets can be
used for an empirical line correction (e.g. using two, the targets should
be dark and bright). Whenmore than two targets are used, they should
properly cover the reflectance range, but avoiding reflectance spectra
intersections; if it is the case, a large number of spectra is recommended
to be used (Richter and Schläpfer, 2016), and thus, we used a large num-
ber of targets. The EVA foammaterial presented a highly Lambertian be-
havior and was useful in different campaigns. We worked with two



Fig. 2. UAS materials: (a) Parrot Sequoia multispectral sensor (b) Downwelling Light Sensor (DLS) (c) Nominal FWHM bandwidth (d) DJI Phantom III platform with the optical sensor
equipment.
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sizes of artificial targets, a group of 14 units of 50 cm × 50 cm × 2 cm
(namely “EVA” in Fig. 3) and a group of 10 units of 40 cm × 60 cm ×
0.2 cm (namely “foam” in Fig. 3). Those targets were big enough to be
clearly seen in the UAS images (9 cm pixel size) with an equivalent sur-
face of 30.9 pixels and 5.5 pixels × 5.5 pixels around the central pixel in
the squared targets, and with an equivalent surface of 29.6 pixels and
4.4 pixels × 6.7 pixels in the rectangular targets. This always allowed
one “pure” pixel (surrounded by 5 × 5 pixels) at the center in the
squared targets, and, consequently, they were the preferred ones to re-
late the drone sensor values and the in-situ (spectroradiometer) values
through fitting and testing. Rectangular targets were only used to com-
plement themeasurements since their pixelswere not so symmetrically
distributed around the central pixel.

Seven EVA targets were located in a shadow to experiment with dif-
fuse irradiation conditions and support the de-shadowing process,
while the remaining 17 targets were located under direct sunlight. To
this end, the spectral signature of each target was integrated at the
FWHM provided by the Parrot Sequoia manufacturer (Fig. 3).

3. Methods

3.1. Use of the photogrammetric software

We used Agisoft PhotoScan v.1.4.1 (Agisoft, 2018) photogrammetric
software, which is widely used in current UAS projects (Kraaijenbrink
et al., 2016). The software workflow initially locates the individual
frames with the geotagged photocenters provided by the navigation
GNSS, then uses automatic tie points to estimate more accurately the
external coordinates (X,Y,Z) for every frame, and the orientation angles
(ω,φ,κ). The Parrot Sequoia is a frame multilens sensor that generates
four non-registered raw images in DN values, but the photogrammetric
software uses the internal geometric information stored in the EXIF file
Fig. 3. Field spectroradiometricmaterials: (a) Field spectroradiometricmeasurements on target
bandwidth. The “foam” and the “EVA” panels differed in the size and, as seen in the spectral si
of each image to register themultiple bands (Jhan et al., 2017). The ori-
entation process was optimized by filtering out erroneous points and
using GCPs that were obtained from the official reference points of
this mining activity reported in the respective exploitation labor plan
cartography, which were used for indirectly georeferencing the bundle
block. The validation of the geometric accuracy was achieved using the
cross-validationmethod and complyingwith the planimetry and altim-
etry standards of theAmerican Society for Photogrammetry andRemote
Sensing (ASPRS) for digital orthoimagery (ASPRS, 2014) (cf. Table S5 in
the Supplementary materials). This process generated the bundle block
adjustment with aero-triangulation, the individual images mosaicking
and the photogrammetric construction of a dense point cloud with X,
Y and Z coordinates. The 3D point cloud allowed the generation of a Tri-
angulated Irregular Network (TIN), which was further rasterized in a
Digital Surface Model (DSM), and finally outputting a georeferenced
orthophotomosaic. Points classified as terrain were used to generate a
Digital Elevation Model (DEM) and derive contour lines. DLS irradiance
information stored in EXIF fileswas used to radiometrically correct each
photogram, so as to obtain at-sensor reflectance values. The photogram-
metric software output was composed by the orthophotomap, the DEM
and the DSM, the elevation contour lines from the DEM, and the dense
point cloud of each model.

3.2. Use of the RS&GIS software

We used MiraMon (Pons, 2016) RS&GIS software to radiometrically
correct the at-sensor drone imagery, to generate the derived spectral
and structural variables, to perform the digital classification to obtain
land cover maps, and to integrate drone imagery with official mapping
agencies cartography.

Shadow reduction is the first issue to be solved, processing sepa-
rately those pixels irradiated with diffuse radiance (shadowed pixels)
s (b) testing shadow effects (c) spectral signatures of targets, overlapped to Sequoia sensor
gnature, in the color.
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from those pixels also illuminated by direct Sun irradiance (non-
shadowed pixels) to recover information from as much shadowed
pixels as possible (Movia et al., 2016). In our approach, the detailed
shadow detection was obtained combining empirical and physical
methods (Adeline et al., 2013). In order to limit the possible histogram
commissionswithin the geometrically candidate pixels, the joint condi-
tions for selecting shadowed pixels was: i) under the histogram thresh-
old of thefirst quartile in the intensity image, in the REG band and in the
NIR band; ii) under the shadow of the Digital Cast Shadow Model
(DCSM) or Digital Illumination Model (DIM) [self-shadows]. Once
masked, the reduction was achieved with the invariant color model
method (Adeline et al., 2013) taking advantage of radiometric values
taken in pairs of targets located in shadowed and non-shadowed condi-
tions simultaneously. Non-shadowed pixels and de-shadowed pixels
were tagged and, finally, a 5 pixels × 5 pixels mean filter was applied
in the boundary belt of de-shadowed areas to smooth the transition
(cf. Fig. S7 in Supplementary materials). Afterwards, at-sensor drone
data obtained with DLS was radiometrically corrected by applying the
empirical line technique supported in field spectroscopy measure-
ments, so as to improve the fitting to target references and correcting
possible biases.

When radiometrically corrected, imagery was used for calculating
spectral variables to statistically discriminate land covers at pixel reso-
lution. A large quantity of spectral indices using VNIR information are
related in the specialized literature, which focused on detecting vegeta-
tion (Xue and Su, 2017) and soil (Viscarra Rossel et al., 2016) features. In
order to distinguish and quantify the area occupied by mine spoil out-
crops from replaced topsoil (technosol) and the considered vegetation
strata (grassland, shrubland and tree cover),multiple referenced indices
were tested according to the availability of UAS sensor bands. Calculat-
ing the correlation matrix between all the tested indices and the spec-
tral bands showed that indices with less redundant information
included:

i) Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) [1] and
Modified Soil Adjusted Vegetation Index 2 (MSAVI2)
(Richardson andWeigand, 1977) [2], whichminimize the effects
of the soil background in the vegetation detection, and is widely
used in soil erosion, drought and desertification analyses

[1] SAVI = (NIR− RED) 1.5 / (NIR + RED + 0.5)
[2] MSAVI2 = 0.5 [2 NIR + 1 − √((2 NIR + 1)2 − 8 (NIR

− RED))]

ii) Normalized Difference Water Index 1 (NDWI1) (McFeeters,
1996) [3] whichwas designed to delimit water bodies. However,
in the study area context, it enhances the detection of vegetation
and soil moisture

[3] NDWI1 = (GRE − NIR) / (GRE + NIR)

iii) Normalized Difference Vegetation Index (NDVI) (Rouse et al.,
1974) [4], which is the most used index to discriminate vegeta-
tion and monitor its evolution in multi-temporal analysis

[4] NDVI = (NIR − RED) / (NIR + RED).

Soil and vegetation structural features were important inputs to de-
scribe the categories we aimed to map. Thus Digital Terrain Models
(DTM) provided information that was not in the spectral bands and in-
dices. Note that DTM are digital models that represent any variable, a
DEM is a DTM where the variable is the terrain elevation, and a DSM
is a DTM where the variable is the surface elevation (including vegeta-
tion, buildings, etc.). To this end, the DSM was the base for calculating
the DIM and the DCSM used in the shadow reduction process, while
the DEM was the base to calculate the Digital Slope Model and the
Digital Aspect Model used in the terrain morphology characterization
and is capable of describing water runoff flows. A very valuable product
is the height difference between the DSM and the DEM, which result in
providing structural information ranging from the bare soil (~0m of dif-
ference) up to the tree formations (N2 m of difference).

3.3. Classification methods and accuracy evaluation

The automatic land cover classification was carried out using k-
Nearest Neighbor (kNN) classification algorithm (Cover and Hart,
1967) implemented as a parallelized 64-bit version in the MiraMon
software. kNN is particularly robust when different spectral responses
are associated to a unique informational class (Vidal-Macua et al., 2017).

Ground-truth plotswith a known land cover played a key role at this
step. Delimited areas were digitized over the orthophotomap, whereby
and half of them were used to train the classifiers (Training Areas, TA)
and the other half was set aside to validate the thematic accuracy (Val-
idation Areas, VA) (Fig. 4).

Six land cover categories in the legend of thematic areas were
considered:

Mine wastes: Outcrops of bare mineral substrates, very poor in or-
ganic matter (b0.5%), and without vegetation, formerly not restored
soil (mine spoils dump). This category is well characterized spec-
trally in the restored area with a b1% standard deviation in in-situ
measurements (Fig. 5).

Topsoil: Bare soil with any organic matter content (N0.5%) but with-
out vegetation, replaced former soil coming from restoration activi-
ties (technosol). This category was well characterized spectrally in
the restored area although a 2% standard deviation is observed
throughout the measurements (Fig. 5).
Tree cover: Tree plant formations, typically forested zones of the lat-
est stages in restored areas. Not only spectral features characterized
this category, but structural information was used to consider that
all vegetation pixels with a height AGL over 2 m corresponded to
trees.
Shrublands: Plant formations of up to 2mAGL,mainly bushes corre-
sponding tomedium successional stages. Several species and forma-
tions were included in this category, which also featured a wide
spectral signature variety (Fig. 5).
Grasslands: Herbaceous plant formations with heights of up to 1 m,
mainly consisting of grasses and forbs species that correspond to
early successional stages in restored areas. Several grassland forma-
tions were included in this category, which featured a wide spectral
signature variety (Fig. 5).
Remaining shadows: Shadows not corrected in the shadow reduc-
tion process can be considered as missing data. This category is
scene-dependent (terrain morphology, solar zenith angle (θ) and
solar azimuth angle (ϕ)).

4. Results

UAS-acquired spectral information in green, red, red-edge and near-
infrared wavelength regions resulted in generating orthophotomaps of
9 cmpixel size that clearly showedminewastes, topsoil, and vegetation
structures. Locations that were inaccessible to technicians could also be
observed and registered. A systematic multispectral measurement was
done over the entire area of interest, complementing the traditional
transecting operations.

Radiometric correction resulted in a good fitting to ground-truth ra-
diometric measurements. Although the coefficient of determination be-
tween field data and at-sensor (Sequoia) reflectance data was over 0.9
in all bands, bias and gain were not good enough for highly accurate



Fig. 4. General workflow for land cover mapping from UAS data using the kNN classifier.
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applications. Establishing synergy between the conventional field spec-
troscopy measurements and novel UAS sensors, we finally applied the
empirical line correction to at-sensor (DLS) reflectance values to fit
the image data to in-situ observed values in the seven targets located
in direct irradiance illumination conditions. However, we previously
tested the accuracy of the results by performing the empirical line
with three spectrally representative targets, including dark and bright
ones, and evaluating the results with the remaining four. The obtained
bias and gain clearly provided a betterfitting to ground truth thanfitting
using the at-sensor Sequoia reflectance data. Once thiswas clarified, and
given that the bias and gain values obtained using three or seven refer-
ences provided similar model results, we finally applied the empirical
line correction using all targets (seven) in order to minimize any error
and obtain the more robust model. On the other hand, shadow reduc-
tion facilitated the process of classifying previously shadowed pixels, al-
though the method was not perfect and some undetected shadows
remained (Fig. 6).

Spectral information was combined to generate additional informa-
tion and detect vegetation and soil properties (i.e. vegetation activity
(NDVI), moisture content (NDWI1)). By visualizing false color combina-
tions of drone images it was intuitive to find the presence of vegetation
due to the high response of active vegetation in the NIR band. By map-
ping spectral indices, we could focus on the spatial distribution of the
vegetation presence and activity (NDVI), the moisture content
(NDWI1) and the soil effects on vegetated areas (SAVI and MSAVI2),
which altogether facilitated in the process of quantifying vegetated
areas and non-vegetated areas at 9 cm × 9 cm pixels (Fig. 7).

Additionally, structural information about the terrain morphology
was constructed from the DEM and allowed simple topographic
Fig. 5. Ground-truth data: Field plots of (a) mine-wastes soil (b) replaced topsoil (
products as contour line vector maps, which, in combination with offi-
cial topographic maps could complement the terrainmorphologymon-
itoring. Combining the information on sun position and the DSM,
important landscape and ecological information was retrieved, as the
vegetation projected shadows and sun illumination rates. Moreover,
the differential map between the DSM and the DEM provided relevant
information about the relative heights of structures, and thus, the vege-
tation height AGL. Firstly, in the classification step, the layer of the dif-
ferential map between DSM and DEM (in combination with the
spectral information layers) was used to statistically contribute to
distinguishing high vegetation from low vegetation; in this respect it
is important to note that a pixel with a spectral response different to
vegetation can have a relative height but is note classified as vegetation.
Secondly, in the interpretation of the results step, those pixels classified
as vegetation can be crossed with the differential map between DSM
and DEM to determine the vegetation height (Fig. 8).

Finally, selected digital information was used to generate a stack of
nine statistical variables (spectral and structural) to characterize each
land cover. Four variables represented the spectral bands of the Parrot
Sequoia (GRE, RED, REG and NIR radiometrically corrected), three vari-
ables represented the vegetation indices (SAVI, NDWI1 and NDVI), one
variable represented the intensity part of the color space transformation
and the remaining variable represented the AGL difference between the
DSM and the DEM.

A total of 60,402 pixels were used as Training Areas for the digital
classification process, which were selected by photointerpretation on
delimited plots visible in the drone image. The combination of training
data, statistical remote sensing variables and the kNN classification
method, produced a land cover map where the categories of interest
c) grasslands (d) shrublands (e) mine wastes and topsoil spectral signatures.



Fig. 6. Radiometric correction of drone data. (a) Regression resulting from the empirical line radiometric correction using three reference targets. (b) Validation, using four independent
targets, of the empirical line correction performed from (a) results. (c) Regression resulting from the empirical line correction using seven targets (regression finally used for the empirical
line correction). (d) Detail of the shadow reduction result in imagery and land cover classification (cf. Fig. S7 in Supplementary materials for more details).
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were identified, and therefore individually monitored. A total of
11,872 pixels were used as test areas to evaluate the thematic accuracy.
The overall accuracywas 94.71% and the kappa indexwas 0.92. The con-
fusion matrix showed a good accuracy when splitting mine wastes and
topsoil (N97%), tree cover was mapped with good results (N96%), and
most of the confusion was found between grass and shrub vegetation,
due principally to the intrinsic structural and spectral diversity of
these categories (cf. Table S6 in the Supplementary materials).

The thematic land cover mapping was principally useful for quanti-
fying diverse plant covered area and its spatial distribution trend, which
was carried out by considering all the restoration stages together or at
each individual stage scale (Table 1).

The land cover area occupied in each restoration zone was moni-
tored not only in absolute units, but also comparing relative changes
in the internal distributionof each stage. The analysis of the internal var-
iation of land covers distribution was found as one of themost interest-
ing results of the provided information. The study area presented
different restoration stages and in all of them, the spatial particularities
were mapped, which constitute a valuable product for environmental
managers (Fig. 9).



Fig. 7. Spectral information from UAS data: Top: Vegetation indices calculated with the RS&GIS software. Bottom: False color orthophoto generated from near-infrared, red and green
bands.
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Themapping products obtainedwere fully integrated into the actual
official cartography, which locally improves both the spatial resolution
and the temporal resolution. Therefore, the visual inspection of restora-
tion processes is greatly improved, as it provides crucial information in
the event that a regularly updated official orthoimagery would not be
feasible. If previous cartography is available, UAS products are useful
in detecting anomalies in the restoration process, and thus make it pos-
sible to focus on zones where vegetation development remains low
(Fig. 10).

5. Discussion

This medium-sizes opencast mine restoration (b10 ha) was easily
covered by a low-weight rotary-wing UAS. Fast multispectral informa-
tion acquired from the UAS sensor is particularly interesting due to
the spatial resolution (9 cm) and coverage (64,386 m2), which makes
it possible to provide a very detailed visual inspection of the entire re-
stored area, thus making it a highly valuable tool for controlling and
Fig. 8. Structural information from UAS data: Top: Digital Terrain Models accounting for veg
Differential height between Digital Surface Model and Digital Elevation Model, representing ve
monitoring restored mining areas. In addition to scientific interest, in-
troducing UAS into the periodic inspections of mine restorations could
be considered as an objective and effective solution for reducing dis-
agreements between public administration and private companies,
and at the same time, contributing tomonitoring the sustainable devel-
opment of extractive mining activities.

Validation issues regarding radiometric corrections were solved in
synergy with in-situ spectroradiometric measurements, using inexpen-
sive reference panels. In this study we used a large number of targets to
test different spectral responses and for validation purposes. Neverthe-
less, a lower number of radiometric references can be used for this ap-
plication (Richter and Schläpfer, 2016). Indeed, the empirical line
regression using seven targets and using three targets is very similar
(Fig. 6), but in this study we used seven references to perform a more
robust regression. The use of the Parrot Sequoia DLS did not provide sat-
isfactory reflectance values, as demonstrated in the regressions be-
tween image data and field spectroscopy data (Fig. 6). The coefficient
of determinationwas good (R2 N 0.9 in all bands) but the biaswas higher
etation, soil elevation, sun illumination and topographic contour line product. Bottom:
getation height of over 2 m.



Table 1
Land cover area (m2)mapped by soil and vegetation typologies and restoration stages. Ab-
breviations: T0= 0–5 years, T1= 5–10 years, T2= 10–15 years, T3= 15–20 years, REF=
Reference area, TRA = Transit Area, ROI = Region Of Interest.

Surface cover/stage T0 T1 T2 T3 REF TRA Total

Mine wastes 829 2536 4426 3608 233 3601 15,233
Topsoil 28 240 241 603 130 51 1293
Tree cover 862 4700 6470 4932 5480 42 22,485
Shrubland 833 1895 2363 2977 1273 28 9370
Grassland 1802 3206 2962 6387 1039 265 15,661
Remaining shadows 10 51 175 54 51 4 345
Total ROI 4364 12,627 16,638 18,561 8206 3990 64,386
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than 4% in visible bands and reached 7% in the red-edge band. These biases
have been corrected using the empirical line correction byfitting the image
to the reflectance of reference targets (Padró et al., 2018). Nevertheless,
previous works that used more accurate DLS instruments have demon-
strated that the use of upwards looking irradiance sensors is a good system
for converting images toat-sensor reflectance (Hakala et al., 2018;Markelin
et al., 2018), but the challenge in the aforementioned method is ensuring
that the upwards looking sensor are consistently horizontally leveled.
Shadow reduction allowed the recovering of information from pixels that
would be lost in the land covermapping, although a relatively few number
of pixels remained classified as shadows due to conservativemasking deci-
sions, as pointed out in previous studies (Movia et al., 2016; Adeline et al.,
2013).

Band calculation using near infrared and visible information facili-
tates the quantification of vegetation activity in intensity maps, which
point out areas with high vegetation development and areas with veg-
etation cover deficits. Using photogrammetric DSM and DEM provided
the essential basis creating derived terrain models that contributed in
obtaining valuable information by computing the sun illumination re-
ceived in every pixel, the detailed terrain slope, or the vegetation height.
It is worthy noting that spatial resolution of 9 cm is a fine systematic
landscape sampling, which is enough to establish vegetation height
classes reflecting the dynamics of the vegetation cover from the initial
phases to the more advanced stages of the restoration. Airborne lidar
data could typically offer spatial resolutions and samplings below 1 m,
and rarely below 10 cm at low-cost. However, lidar sensors are cur-
rently being tested in combination with UAS platforms that could
allow ultra-high spatial sampling. Perhaps in the future, the presented
protocol could be complemented with lidar sensors. However, for
many, the high expense of using and maintaining lidar sensors can
prove ultimately non-cost effective (Manfreda et al., 2018). As a more
viable alternative, photogrammetric solutions, such as those presented
in this paper, offer more than reasonable answers to opencast mine res-
toration monitoring. Although the use of low-cost UAS imagery for
monitoring purposes is plenty operative in developed countries, we
point to developing countries, where often there are higher economi-
cally constrains. In this land cover degradation and restoration study,
we found a solution that can effectively contribute towards integrating
scientific methods and technologies, while working towards
Fig. 9. Land cover relative distribution within each restoration stage.
economically robust transitions in environmental management in ac-
cordance with the Sustainable Development Goals (United Nations,
2018).

The categorical treatment of land surfaces led to the quantification of
the area covered by the different soil and vegetation types: not only
within the overall restoration range, but also specifically within the dif-
ferent restoration stages. Detecting and distinguishing topsoil andmine
waste cover was carried out and yielded good results. This is important
when considering that topsoil andminewaste cover pose real concerns
for identifying and interpreting restoration failures and risks (Espigares
et al., 2011). Indeed, on the one hand, bare soil cover could be an indica-
tor of sowings and planting failures, and/or of poor soil quality, which
increase the risk of erosion (Van der Knijff et al., 2000; Espigares et al.,
2011). On the other hand, mine waste dumping or mine waste used as
soil substitute without a proper organic and/or mineral amendment,
heavily limits vegetation establishment and encroachment, supposing
an unacceptable situation in mine restoration (Ram et al., 2006;
Jordán et al., 2008). Therefore, an expedient and precise quantification
of these types of land cover is a useful tool for estimating erosion risks
or soil quality limitations. Regarding monitoring vegetation and soil at
stages, grasslands were the dominant cover in T0 but some areas cov-
ered byminewastes were still detected. Therefore, corrective measures
are still imperative for improving vegetation encroachment (Jordán
et al., 2008). In the restored areas from five and ten years ago (T1) tree
cover was relatively dominant in the landscape despite the same pro-
portion of mine waste cover was detected. Restored areas from 10 and
15 years ago (T2) occupied the most extensive tree cover area of the
four restoration scenarios considered, but also mine waste outcrops
were the second land cover in this stage, which could be attributed to
failing restoration processes in problematic areas (steeped slopes, slope
N 90%). The late stage restoration scenario (T3), in which restoration mea-
sures were carried out N15 years ago, showed a land cover distribution
far away from the reference landscape (REF) and the more recent stage
considered, and thusdemonstrating theneedof revising the classicalmeth-
odologies used for the restoration in this area. A plausible explanation of
this result can be attributed to less exigent need for restoration regulations
20 years ago, whereby the usual practice at the timewas the direct affores-
tation over the mine wastes with Aleppo pine (P. halepensis), without soil
replacement, or over a very unfertile substrate.

A fixed-wing platform could be more suitable for muchmore exten-
sive restorations and perhaps further improvements could be achieved
using multispectral sensors with more bands (e.g. MicaSense RedEdge)
or hyperspectral sensors with narrower bands to enhance the spectral
information. Regarding image geometry, low-cost single-frequency
GPS receivers do not allow direct georeferencing. As such, geometric ac-
curacy relies on the accuracy of delimitation stacks used as GCPs, which
mining companies are required to maintain by law, as well as the
technician's skill to locate them in the imagery. A heavier multicopter
typically offers more stability, while a fixed-wing platform typically of-
fers much more autonomy and coverage, and a double-frequency
carrier-phase GNSS provides much more direct georeferencing accu-
racy, and a lidar sensor could provide structural information (Listopad
et al., 2015), but this material is much more expensive. Ultimately, our
goal was to design a protocol that is low-cost and capable of offering ac-
ceptable results. The material is useful in different campaigns and costs
altogether under 6000 €, which included the platform, the UAS sensor,
the field spectroradiometer and the radiometric reference targets.

6. Conclusions

Monitoring opencast mining restoration with UAS imagery has been
proven operational and useful, as it provides expedient and accurate spatial
and thematic information. Resulting products can systematically and recur-
rently sample the restoration area of interest at sub-decimeter pixel size,
which improves airborne imagery spatial resolution and allowsmonitoring
in inaccessible, restricted or dangerous areas. In addition to the intrinsic



Fig. 10. Top: False color orthophotomap and land cover classification result integrated with official cartography. Bottom: Land cover classification of the study area.
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interest of the imagery for visual inspections, photogrammetric andRS&GIS
software treatment provided additional spatial information about vegeta-
tion development and restoration failure or success, plant cover andheight,
mine waste dumping, bare soil cover, and geomorphic terrain features.

With the relatively low-cost material used in this study i.e. low-
weight platform, multispectral sensor, low-cost radiometric reference
panels and field spectroradiometer, it is possible to generate rigorous
cartographical documentation as orthophotomaps, Digital Elevation
Models, Digital Surface Models, vegetation indices and thematic land
cover maps fully integrated to previous cartography and official data-
bases. The inclusion of new unmanned aerial technologies gives us a
glimpse of new horizons for monitoring restoration with inexpensive
materials and intensive samplings.

Not only did automatic land cover mapping allow us to dispense
with the manual photointerpretation, it also provided accuracies of
over 94%, although individual focusing on problematic areas could also
be improved manually, if needed. The overall workflow was highly au-
tomatized with batch processes. Nevertheless, it is convenient for the
specialized technician to verify the correct execution and help in impor-
tant decisions, such as digitizing of the training and testing areas. More-
over, compared to what would have been carried out in a conventional
inspection of the restored areas, the fieldwork time in our case study
was reduced considerably, which altogether included geometric stacks
maintenance, field spectroradiometric measurements, and UAS flight.
To summarize, the time used for obtaining ground-truth data and the
UAS flight, 2 h is sufficient for inspecting a restored area of 10 ha,
while data processing can be fully done by one person in two working
days. It is worth noting that while UAS can help and support the moni-
toring of restoration activities, it should not by any means replace in-
situ inspections or technician supervision.

In addition to the interest of monitoring older restorations with an
unprecedented detail, current UAS remote sensing products will cer-
tainly become a valuable precedent for future opencast mine monitor-
ing studies all around the world, as it provides improved time-series
information. Considering the potential, the obtained results and the ob-
jective information produced, the proposed protocol can be a suitable
tool for administrations, mining and consulting companies as well as
for environmental scientists.
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