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A B S T R A C T   

Mining is an important activity of the primary sector with strong economic and environmental impacts. All over 
the world, governments have made efforts to regulate mine restoration by monitoring and assessing the evolution 
of mined sites. Our work aims to synthesize various remote sensing applications into a single workflow in order 
to obtain cartographic products using Unmanned Aerial Systems (UAS), not only for mine restoration manage
ment, but also as a way of monitoring mining activity as a whole. The workflow performs image processing and 
terrain analysis calculations, which conduct a supervised classification of the land cover. The resulting mapping 
products include orthoimagery, Digital Surface Models (DSM), land cover maps, volume variation calculations, 
dust deposition, detection of erosion problems, and drainage network evaluation maps. The data obtained from 
red-green-blue (RGB) sensors has a spatial resolution of 4–10 cm, providing information that allows the char
acterization of land covers with an overall accuracy of 91%. In comparison, if using multispectral sensors with 
the same flight conditions than RGB, image spatial resolution diminishes and land cover characterization ac
curacy drops to 81%. The resulting digital maps can be fully integrated into Geographic Information Systems 
(GIS), allowing the quantification of environmental features and spatial changes. Our study provides the basis for 
creating a large-scale, replicable and ready-to-use workflow suited for monitoring the exploitation of minerals 
and mine restoration using RGB imagery obtained through drones.   

1. Introduction 

Landscapes affected by human activity cover an increasing portion of 
the earth’s surface, thereby significantly changing the pre-existing 
morphology (Lewin and Macklin, 2014; Tarolli and Sofia, 2016). In 
most countries, open-pit mines represent an economic pillar that provide 
raw materials for construction, public works and industrial sectors. In 

addition, the growing demand for materials suggests that this activity 
will continue increasing until 2050 (Vidal et al., 2013). 

The exploitation of open-pit mines affects the vegetation land cover, 
soil properties and hydrological structure (Osterkamp and Joseph, 
2000). Among these effects, we can determine four large impact groups: 
erosion, subsidence, hazards and runoff (Xiang et al., 2018). Conse
quently, most natural landscapes affected by open-pit mines and other 
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highly disturbing activities (road construction, landfills) suffer very 
significant ecological impacts in terms of how these areas and their 
surroundings subsequently deteriorate (Carabassa et al., 2020; Chen 
et al., 2015). To prevent the degradation of these affected spaces, 
restoration measures need to be developed and implemented once ac
tivity ends (Carabassa et al., 2012, 2019). Restoration, monitoring and 
periodic inspection of these activities is required for the efficient man
agement of natural resources, and is mandatory in most countries ac
cording to mine restoration legislation at different levels (European 
Directive 2006/21/EC, Spanish RD 975/2009, German Bundesbergge
setz 1980, Catalan Law 12/1981). However, this monitoring is difficult 
to achieve through classic and time consuming in-situ methods (e.g. 
field transects and plots, floristic inventories, direct observations) by 
officials or involved companies and agencies. This is because of the huge 
surface area of some mines, the difficulty to access to some places, the 
risks associated with direct monitoring of some restored or active areas 
(e.g. close to extraction fronts or on steep slopes) and the lack of in
spectors and funding available for this monitoring. 

In this context, remote sensing systems offer direct and customizable 
monitoring and control capacity. Thus, they are powerful tools for 
agents involved in the management and recovery of exploited mines, 
and contribute towards minimizing the negative effects associated with 
mining activities (Karan et al., 2016; Hüttl and Weber, 2001). The study 
of open-pit mine monitoring has undergone a substantial change in 
recent years as a result of incorporating new technologies in place of 
traditional methods. Initially, this was with the introduction of satellite 
and aerial images which made it possible to monitor vegetation and 
exploitation in large areas (Lawley et al., 2016; OSMRE, 2015). How
ever, the relatively low spatial resolution of satellite images, the high 
cost of taking images with airplanes or the constraints related to cloud 
conditions in both cases have led to the development of Unmanned 
Aerial Systems (UAS) or drones. 

Previous experiences in monitoring restoration projects located in 
open-pit mines, with the aid of multispectral sensors, have yielded 
interesting results (Padr�o et al., 2019). As a result, the ability to map 
land cover in the study areas helps in subsequently evaluating the 
quality of the actions developed in restoration policies. However, mul
tispectral UAS-sensors are not usually capable of obtaining similar 
spatial resolution to RGB, at the same flight height, since RGB have a 
resolution that is one order of magnitude higher. Moreover, in the 
context of areas of flight with steep slopes or vertical walls like those 
existing in quarries, low flight heights such as those required for mul
tispectral cameras may not be possible for security and time lapse rea
sons, and are more time consuming. 

Apart from land cover mapping, the study of point clouds derived 
from UAS flights also makes it possible to study relief changes, for 
instance, by differentiating the extraction and collection sites in the 
exploited areas (Xiang et al., 2018; Ruiz-Carulla et al., 2017), observing 
possible ground movements and their associated problems in restored 
areas (Cooke and Johnson, 2002), or specifically assessing vegetation 
changes (Vidal-Macua et al., 2020). 

During the last decade, the use of UAS has become a popular and 
accessible technology for monitoring, modeling and mapping the terrain 
(Kandissounon et al., 2018; Manfreda et al., 2018). Through the Struc
ture from Motion (SfM) techniques (Carrivick et al., 2016), it is now 
possible to obtain products with centimetric resolutions, i.e. orthopho
toimages and Digital Terrain Models (DTM) including Digital Elevation 
Models (DEM) and Digital Surface Models (DSM). These algorithms 
allow the quick and easy spatial identification of common points in the 
images (Micheletti, 2015). The Scale-Invariant Feature Transform (SIFT) 
algorithm breaks down the image into a database of singular points. The 
points identified are invariant regardless of the image scale or rotations 
and are only slightly influenced by changes in illumination (Lowe, 
2004). 

The objective of our work is to propose a novel workflow for 
generating quantitative spatial information, focusing on restoration 

failures and successes, in order to support private companies, public 
administration and environmental scientists in their use of UAS low-cost 
techniques for monitoring land restoration efforts not only during the 
exploitation phase of open-pit mines but also after cessation of mining 
activities. By using RGB imagery derived from UAS, the protocol focuses 
on analyzing and generating detailed cartography in a semi-automatic 
way to monitor key parameters, such as vegetation development and 
encroachment, soil erosion, drainage network evaluation and even dust 
deposition maps when present. The goal is to extract very detailed 
drone-derived digital data (sampling distances below 10 cm) to generate 
high resolution quantitative information useful to help decision making 
with objective indicators, and not biased by personal valuations. Results 
about the application of our protocol are presented and discussed, 
comparing RGB and multispectral data derived products. 

2. Material and methods 

2.1. Study area 

The study has been carried out in three quarries located in Catalonia 
(NE Iberian Peninsula), which cover different restoration landforms, 
technosols and Mediterranean climates, from sub-humid to semi-arid 
(Fig. 1, Table 1, Map M1). 

In all the areas studied, a variety of land covers has been included 
(herbaceous vegetation cover, shrubland, tree forest, eroded areas, mine 
wastes areas, bare soil, area affected by dust deposition, extraction 
fronts) in order to have a representative sample of the most relevant 
types existing in quarries. All the studied quarries produce calcareous 
aggregates, two of which were active when conducting the flights 
(Falconera and Pontils), while the other one was abandoned (Jornet). In 
active quarries, the revegetation approach consisted of the sowing and 
planting of a remarkable variety of species, which were intended to 
support the recovery of native species (Alca~niz et al., 2011). On the 
abandoned quarry, revegetation was spontaneous and no specific ac
tions were carried out. 

2.2. Systems and sensors 

For the image-taking process, multi-engine aerial platforms, low-cost 
UAS of the brand DJI Phantom 3 Pro (DJI, 2015) in Pontils and Phantom 
4 Pro (DJI, 2017) in Jornet were used. The optical sensor used for RGB 
data collection was the FC300X (Phantom 3 Pro) and CMOS ‘1 (Phantom 
4 Pro). The sensor used for multispectral data collection was a Parrot 
Sequoia. This last sensor works with the bands G (Green), R (Red), Reg 
(Red Margin), NIR (Near Infrared) (Parrot Drones, 2016). The technical 
characteristics of the RGB and multispectral sensors used are indicated 
in Table S1. 

2.3. Workflow 

To carry out the study, the following protocol was proposed (Fig. 2). 
In the first place, the area of interest of each flight zone was identified 
and characterized to carry out the data collection. The acquisition of 
aerial photographs using UAS in both longitudinal and transversal ori
entations was performed with an overlap of 80%. The height of the 
flights was adapted to the altimetry of the terrain, programming the 
camera to trigger at different heights, from 60 m to 106 m. Applying 
such an adjustment allowed the minimization of the error associated 
with the topography variability in the area. With the images taken on the 
various flights, a digital photogrammetric reconstruction process was 
carried out using the specialized software Agisoft Photoscan (Agisoft, 
2018).The image treatment (Micheletti, 2015) can also be carried out 
using appropriate software such as Visual SfM (Wu, 2013) or Pix4D 
(Pix4D, 2017). 

During the digital photogrammetric reconstruction process, the 
starting images have position data from the scene center and can 
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therefore generate positions relative to the block of images as a whole. 
This process provides an agile and basic orientation that is subsequently 
completed by orienting the cameras in each of the acquisitions. More
over, the images are compared in pairs in order to obtain homologous 
characteristic points through the SIFT process (Lowe, 2004). As a result, 
the software is able to reconstruct a 3D model of the surface photo
graphed and can thus obtain a point-oriented cloud. Subsequently, the 
point cloud is densified and the orthomosaics of the surfaces of interest 
are obtained. 

For the present study, control points were not used as these are only 
necessary in the multi-temporal analysis of earthworks or other 
comparative works. It is also possible to make a record of the images 
taken with the Sequoia (VNIR) and the UAS Phantom (RGB) sensors 
(Padr�o et al., 2019). After obtaining both the orientation of each scene 

center at the time of the shooting, and a dense point cloud, a point cloud 
mesh was generated. This surface allowed us to generate an orthoimage 
from the aerial images. 

After the photogrammetric processing, the resulting products were 
used in Remote Sensing (RS) and Geographical Information Systems 
(GIS) software, namely MiraMon (Pons, 2019) and QGIS (QGIS, 2020), 
which are specifically devoted to spatial analysis and have geostatistical 
capabilities. The statistical analyses and map mathematics were per
formed with different modules included in the referenced RS and GIS 
softwares, but the overall workflow can be applied using most similar 
commercial software. 

Based on NdPD, non-morphological volumes such as trees and grey 
infrastructures were identified analyzing the changes in orientation of 
the normal points within a radius of interest (Fig. 3). This process also 

Table 1 
Quarry sites, their location, climatic conditions (precipitation and temperature), exploitation authorized area according to GENCAT (2014), and restoration char
acteristics (morphology, filler material and organic and mineral substrates used for Technosol construction, A and B horizons) and reference system (plant community 
of the surrounding area).  

Site Latitude 
(N) 

Longitude 
(E) 

Mean annual 
precipitation 
(mm) 

Mean annual 
temperature 
(�C) 

Exploitation 
authorized 
area (ha) 

Landform Technosol 
parental 
material  
(C horizon) 

Technosol 
parental 
material  
(A horizon) 

Reference 
ecosystem 

Pontils 41� 550

23’’ 
1� 290 55’’ 584 12.6 82 Terrace/berm 

embankment with 
steep slope 

Rocky debris Excavated soil Quercus faginea and 
Pinus nigra forest 

Falconera 41� 150

40 ’’ 
1� 530 12’’ 545 15.5 79 Terrace/berm 

embankment with 
steep slope, flat 
areas 

Excavated 
soil and 
mining 
wastes 

Excavated soil 
and organic 
amendments 

Pinus halepensis 
forest and 
mediterranean 
maquia 

Jornet 41� 46 
’33’’ 

2� 010 28 ’’ 669 13.1 38 Continuous slope 
with berms, flat 
areas 

Geologic 
substrate 
(marl) 

Geologic 
substrate (marl) 

Quercetum 
rotundifoliae 
typicum with low 
forest  

Fig. 1. Location and authorized exploitation limits (blue lines) of the three quarries included in this study (GENCAT, 2014), over the official regional agency 
ortophotomap (ICGC, 2019). General map from www.freeworldmap.com. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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allows us to create two typologies of digital models: the first typology 
provides information on the whole cloud of points (once it is cleared of 
noise and low points) corresponding to the DSM, and the second shows 
the points classified as a relief, representing the DEM. 

With the aim of creating a cost-effective method, we studied the 
incorporation of various vegetation indices as a classification variable 

(Table S2, Fig. 4). It has to be noted that each vegetation index based on 
RGB has certain strengths and limitations in terms of highlighting or 
omitting information on specific surfaces (McKinnon and Hoff, 2017). 
Therefore, it should be taken into account that the application of 
vegetation indices based on RGB is limited in regard to monitoring 
certain stages of vegetation growth (Bendig et al., 2015; Tucker, 1979). 

Fig. 2. Workflow for UAV use in monitoring exploitation and restoration in open-pit mines. UAV: Unmanned Aerial Vehicle; GCP: Ground Control Point; SfM: 
Structure from Motion; PC (Point Cloud); DSM (Digital Surface Model); DEM (Digital Elevation Model); DDM (Difference of Digital Models); FAM (Flow Accumu
lation Model); DHdM (Digital Height difference Model); DSM (Digital Slope difference Model). 

Fig. 3. Upper: Classified points (brown: ground; white: discriminated points; fuchsia: outliers). Bottom: Original point cloud. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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The Modified Green Red Vegetation Index, MGRVI (Bendig et al., 
2015), was derived from the Green Red Vegetation Index (Tucker, 
1979), GRVI. The Triangular Greenness Index, TGI (Hunt et al., 2012), 
estimates the concentration of chlorophyll in leaves and land cover 
based on the analysis of green wavelength reflectance. In our work, the 
TGI index was used to determine the concentration of dust, generated by 
mineral extraction and processed, covering the woody vegetation can
opy. The Brightness Index, BI (Mathieu et al., 1998), calculates the mean 
global reflectance of the spectral bands, and facilitates the detection of 
green covers (Mandal, 2016). On the other hand, the Normalized Dif
ference Vegetation Index, NDVI (Rouse et al., 1974), was performed to 
compare the results obtained with the previous indices based on the 
visible spectrum. The NDVI is a widely known index that provides very 
good results in the spectral detection and discrimination of vegetation 
types. This is because it incorporates a spectral strip in the near infrared, 
yielding a high indication of the monitored area of vegetation. Finally, 
an index of intensities (RGB to HSI, space color transformation) was 
calculated in order to discriminate shadow areas. The result does not 
generate high values because the pixels that accumulate lower in
tensities are probably in shadowed areas. DHdM is a variable that is 
crucial for 3D data interpretation. DHdM is derived from the difference 
between the surface model and the elevation model (Bendig et al., 2013; 
Padr�o et al., 2019). DHdM contains information about the heights of the 
different objects (tree, scrub, building, etc.) that are identifiable in the 
landscape: 

DHdM ¼ DSM � DEM  

Where DSM is the Digital Surface Model and DEM, the Digital Elevations 
Model. 

Another variable, which can be obtained from the 3D cloud, is the 
model of the difference between slopes of the DSM and DEM (DSdM) 

that informs us of the slope of each object. This model facilitates in 
discriminating the topographic slope from the slope between objects: 

DSdM ¼ SDMðHDDMÞ

An interesting and useful model in detecting streams and areas of 
preferential circulation of water in the terrain is the Flow Accumulation 
Model (FAM). Developed by Jenson and Domingue (1988) this type of 
algorithm tracks the path that a flow would have when sliding through 
the DEM until it finally leaves the digital model or ends in a sink or 
depression of the same model. To obtain the FAM, the SAGA GIS soft
ware (Conrad et al., 2015) was used. Depending on the type of geo
morphology of the study area, one algorithm or another was applied: 
Rho 8 (Fairfield and Leymarie, 1991) or DEMON (Costa-Cabral and 
Burges, 1994). 

The automatic classifier used was MiraMon’s kNN (Nearest 
Neighbor) software (Pons, 2004). This supervised classifier assumes that 
the pixels that are united in the statistical space belong to the same 
informative class, i.e. it classifies a pixel by examining the available 
information pixels in the statistical space and choosing the most repre
sented informative class in the set of neighbors that are in the vicinity. A 
Euclidean distance in the multivariate statistical space was used for this 
purpose. Training areas were defined by in situ identification and 
photointerpretation of the different land covers with the help of the 
high-resolution orthoimages generated. In this case, the number of 
samples used to define classes is relevant at the time of using the kNN 
classifier. All cover categories had a similar total training area and also a 
similar number of polygons, with a total area for each category between 
0.10% and 0.05% of the total mapped area. Moreover, training areas 
were distributed homogeneously covering all of the studied surface. The 
different categories proposed for the classification of the different land 
covers to be analyzed are described in Table 2. 

Fig. 4. Vegetation indexes based on RGB (MGRVI, BI, TGI) and on multispectral imagery (NDVI), orthophotoimage RGB and orthophotoimage false color for Jornet 
quarry. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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For the classification of the different land covers in Pontils, the 
following variables were used: DHdM, MGRVI, DSdM, Intensity index. 
All variables were standardized while the DHdM variable was not 
normalized, thus maintaining the height data of landscape objects. For 
the classification of different soil covers in Jornet, the following vari
ables were used: HdDM, FAM, MGRVI, BI and DSdM. As in the previous 
case, the DHdM variable was not normalized. 

As a final step, selective filtering was performed to reduce any “salt 
and pepper” effect. This process eliminates those sets of pixels with an 
area size smaller than desired. The surface was determined after 
assessing the size of the elements to be classified. It is recommended to 
eliminate areas smaller than 10 cm2. To perform this step, we vectorized 
the land cover map and then selected those polygons that we wanted to 
remove. With this approach, the geometry of the polygon is not modi
fied, as in the case of a common filter. 

Confusion matrices were used to observe and determine the accuracy 
of the land cover map. These were created with truth-terrain areas, 
which we refer to as test areas. Using confusion matrices facilitated the 
detection and quantification of wrongly classified covers. Moreover, by 
studying the confusion matrices, it was possible to detect the classes that 
present the greatest error and with which covers they are confused. 

Analyzing changes in exploitation fronts, stockpiles and mining 
dumps in the quarries can also provide additional information for mine 
management and restoration. In this study, we use time series derived 
from flights above La Falconera to calculate the volume changes. For 
these calculations, we decided to work with the point clouds and the 
M3C2 method (Lague et al., 2013) by means of the Cloud Compare 
software (CloudCompare 2.8.1, 2019). Although this method presents 
results in an agile and coherent way, the treatment of the results to 
generate a report of moved volumes required the rasterization of the 
result file or the usage of other volume calculation tools. For this pur
pose, the Volume 2.5D tool was used (CloudCompare 2.8.1, 2019), 
which rasterizes the point cloud to later perform a calculation between 
the generated rasters. The result obtained should again be treated in 
raster format to integrate the results generated in the study as a whole. 

Since the previous method requires several formatting changes, a 
new workflow was performed without the point clouds, exclusively 
working with raster files. First, a Difference of Digital Models (DMd) of 
the range of interest was obtained. After, by knowing the area of the 
pixels, the cubic volume formula was applied to estimate the volume 
measures. Thus, the pixel area was applied as a multiplier factor to the 
DMd in order to obtain a Volume Difference Model (VdM) of the time 
interval being studied. 

3. Results 

3.1. Boundaries of authorized exploitation 

One of the first products obtained by applying the described work
flow are orthoimages with very high resolution (4–10 cm spatial reso
lution), which facilitate the evaluation of some aspects directly by 
means of photointerpretation. One of these aspects concerns the control 
of boundaries, as it is relatively easy to detect areas affected by extrac
tion or preparation for extraction (vegetation clearing) outside of 
authorized limits, superposing the orthoimages generated to the 
boundaries layer in a GIS. In the Pontils quarry, an extra-limits area of 
2800 m2 has been detected by photointerpreting the high-resolution 
orthophotoimages generated (Fig. 5). This area was affected by extrac
tion works a decade before the conducted flight, despite being out of the 
extraction authorized limits. At the time of the conducted flight, the 
monitored area was in the first stages of the restoration process, mainly 
dominated by herbaceous vegetation and with some planted seedlings 
growing (undergoing restoration). For this reason, the vegetation cover 
was clearly different from untouched areas (pine forest cover), for which 
it could be precisely delimited. 

3.2. Land cover classification 

For the recovery assessment of a study area, land cover classification 
is essential, in order to know which vegetation dominates and how the 
processes of encroachment and autochthonous vegetation recruitment 
are progressing. To carry out this assessment it is necessary to analyze in 
detail the variables that participate in the classification. It is observed for 
this case (AE Jornet) that the indices which offer the best response are 
MGRVI and BI. However, for the case of Pontils only MGRVI has been 
used (see Tables S3 and S4). 

The visual result of the classification was consistent with the original 
images and the verifications carried out in the field for both case studies 
(Fig. 6, Map M2). In the case of Pontils, the shadow class presented a 
high commission error, significantly affecting the overall result of the 
classification that had a global accuracy of 90.64% (Table S6). It also 
presented difficulties in the process of discriminating organic and non- 
organic soil types with errors of commission and omission between 
both classes. In the multispectral classification, the shadow commission 
error was maintained and even increased, and therefore generally pre
sented a weak result with a global accuracy of 81.00% (Table S4). 

For RGB classification in Jornet, the shrubland class presented a high 
commission error that moderately affected the overall result of the 
classification. However, the other land covers were properly detected 
and presented a consistent result. Despite the error shown in the 
shrubland class a global accuracy of 85.38% was obtained (Table S7). 
Otherwise the multispectral classification presented difficulties when 
discriminating the shrubland and grassland classes; moreover, it pre
sented a weaker result with a global success of 75.60% (Table S8). 

3.3. Temporal study of earthwork movements 

In the quantification of the volumes of materials moved (rocks, 
mining waste, aggregates, topsoil, etc.), results that respond to the 
changes detected are obtained by multitemporal drone flight. To obtain 
these results, a correct registration of the point clouds of the different 
flights is essential. In our case, georeferencing between flights was done 
by ground control points. For the monitoring of fronts, debris and 
storage, both data processing in point clouds and rasters offered very 
similar volumetric results. This data was obtained by using RGB images. 
This product served as the basis for detecting the active areas of the 

Table 2 
Categories proposed for the classification of land covers in open-pit mine 
restored areas.  

Category Description 

Grass Areas covered by grasslands and grasslands with presence of low 
grass 

Shrubland Woody species with a height less than 2 m. It can include both shrub 
and tree plants in early growth stages. 

Tree Woody species with a height greater than 2 m. It is mostly composed 
of trees and some high-rise shrub 

Bare soil Areas without vegetation cover and with a soil rich in organic matter 
(>2%) 

Mining 
waste 

Areas without vegetation cover and with a soil poor in organic matter 
(<2%) 

Shadow Areas where it is not possible to detect the cover due to the low 
intensity of the electromagnetic reflection captured by the sensor, 
this class is generated to avoid overestimating or underestimating the 
state of the covers.  
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quarries being monitored. Moreover, it could be used as a measure of 
evidence to provide justification for penalizing any extraction activities 
conducted in closed areas outside the operating limits or below the 
permitted topographical elevation. With this product, it is possible to 
estimate the volumes extracted from specific areas or specific slopes or 
from blasting (Fig. 7). 

3.4. Gully detection 

The technique of gully detection was carried out by implementing 
the FAM as another variable in the cover classification. For the case 
study, the FAM of Jornet is presented, which shows the classification of 
the cover gully. Moreover, the FAM could also help in evaluating the 
drainage web, by detecting breaks in evacuation channels (Fig. 8). That 
can be very useful to locate the points to be repaired and achieve 
effective erosion control. 

3.5. Effects of dust deposition 

To evaluate the impact of extractive activities on the nearby envi
ronment, the spectral signal of the vegetation covers were analyzed to 

determine dust deposition. This data was obtained from the TGI index, 
as indicated in the methods section. In the northern area of the Pontils 
quarry, we observed a large area affected by dust deposition that we also 
observed in the RGB composition (Fig. 9). However, only the areas 
classified as woody vegetation were evaluated. Herbaceous decks were 
discarded from the analysis, given the similarity with non-vegetative 
ones, in terms of their relative height close to 0 m in the HdDM. 

4. Discussion 

The results obtained in this study confirm the possibility of making 
land cover classifications by using both a multispectral camera and a 
camera with RGB sensor in the visible. The methodology presented is 
developed with the objective of obtaining classifications in the visible 
spectrum, giving high importance to morphometric variables (DHdM, 
DSdM, FAM) in the process. However, the weight of these variables 
makes it difficult to distinguish shrub species from low-bearing trees. 

Obtaining automatic classifications at the high spatial resolution of 
this work supposes a clear advantage compared to previous and recent 
work carried out in the context of mines, that are based on evaluating 
vegetation vigor directly through NDVI or similar vegetation indices 

Fig. 5. Area located outside Pontils concession limits, determined through photointerpretation of the orthophotoimage RGB taken with UAV.  

Fig. 6. Land cover classification for Jornet (A) and Pontils (B) restored areas.  
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Fig. 7. Volumes extracted and accumulated in Falconera between 2017 and 2018. Total volume of material extracted: 1,063,237 m3. Total volume of debris and 
stockpiles: 598982 m3. Background image: Orthophoto 2018. 

Fig. 8. Rill and gully map obtained through MAF in Jornet quarry, represented on DSM (a), details of drainage network affections (b), and heavy erosion prob
lems (c). 
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(Vidal-Macua et al., 2020; Bonifazi et al., 2003), without discriminating 
between vegetation types. Taking into account the principles of 
ecological restoration (Gann et al., 2019), basing restoration monitoring 
only on vegetation vigor will not give a proper idea of vegetation 
development in restored areas, especially when restoration actions have 
been carried out several years before and vegetation has been properly 
progressing. 

Moreover, the global success values and Kappa indices obtained in 
the RGB classifications have higher values than those obtained with 
multispectral sensors. Regarding this, similar or better global success 
ratios and Kappa indices have been obtained using the RGB classifica
tions obtained in the present work, than with the results obtained in 
recent and previous works (Padr�o et al., 2019; Zhang et al., 2019), 
despite using lower spectral resolution sensors (RGB). This result was 
due to the higher spatial resolution of the RGB cameras in the study. 
Resolution in pixel size is an important feature (Zhang et al., 2019; 
Addink et al., 2013), since usually sensors with bands in the infrared 
spectrum have weaker spatial resolution than RGB-sensors used in this 
study. The models derived from the DSM and DEM present greater detail 
with an RGB sensor, since these provide a better result in photogram
metric reconstruction. These results show a clear improvement 
compared to previous reconstructions obtained by the same team in the 
same context (Padr�o et al., 2019). 

In general, the classification obtained offers satisfactory results, 
especially on woody covers larger or smaller than 2 m. Among these, 
some confusion arises when the height of the classified elements is close 
to 2 m because this type of vegetation (bushes and small trees) does not 
maintain a constant height due to their irregular growing type. Also, a 
successful result was obtained in the classification of the category of 
“gully”. Altogether, the promising results gained from this classification 
provide a good incentive for continuing to work with this type of vari
able (FAM). 

In our study, we observed a greater salt and pepper effect in the 
classification obtained by the visible RGB sensor, while, for the map 
obtained by multispectral variables, the salt and pepper effect was not so 
noticeable. This is due to the fact that the spatial resolution in the visible 
RGB sensor is greater and, therefore, it presents greater noise (Hirayama 
et al., 2018). Note that this is an important issue when working with 
high spatial resolution imagery, including multispectral images (Padr�o 

et al., 2019). 
The visible RGB sensor presents confusion between the soil and 

grassland categories, since the latter category can present very similar 
values in the set of variables in the soil category, especially when the 
vegetation is dry. For a good classification, it is recommended to make 
the flights in the spring or early summer seasons (Padr�o et al., 2019), 
when the herb vegetation type has quite differentiated values compared 
to the organic soil or mining residue. 

The presence of dust on the leaves of trees and shrubs was not 
detected using infrared bands. However, it is possible to detect this 
anomaly using the visible bands. RGB indices based on the green 
channel, such as TGI, offer a very good variable to assess the state of 
health of the flora given the sensitivity they present when detecting dust 
particles on plant surfaces (Hunt et al., 2012). 

It is recommended to always take the images in the same period of 
the year, with spring and early summer being the best times, given the 
presence of green and active leaves in the monitored vegetation. Dawn 
and cloudy days are optimal conditions for imaging, since the effect of 
shadows is minimized, and diffuse radiation is available. For this pur
pose, it could be interesting to take images at solar noon (when the sun is 
at its zenith) in order to minimize shadows. For this reason, the images 
of La Falconera have not been classified, as a large part of the restored 
surfaces was in the shadowed area, since the images were captured 
during the morning and winter season. 

The use of landmarks or features of the landscape, which are fixed 
and visible at the working scale, is recommended for the co-comparison 
between multi-temporal data or between the RGB and the sequoia (NIR) 
sensors. Also for the calculation of volume changes, it is highly recom
mended to use control points located in unvarying terrain or at the 
border of the authorized perimeter for a correct estimation of the vol
umes (Esposito et al., 2017). 

5. Conclusions 

The workflow presented allows the precise monitoring of mine 
extraction and restoration works, using ready to use, fast and low-cost 
technology. A UAS-based protocol allows fast monitoring of large and 
remote areas that would be impossible to monitor using classical field 
techniques, in order to obtain more precise and representative products. 

Fig. 9. TGI applied to woody vegetation in the restored area of Pontils quarry.  
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The ability to classify land cover using RGB images helps to reduce the 
cost of the process obtaining higher quality products than using multi
spectral data, since RGB sensors usually have higher spatial resolution 
and a lower price. Automatic classification allows a reduction in 
photointerpretation work and increases the accuracy of the derived 
products (to >90%), although this could be validated and improved 
further by photointerpretation. The workflow is highly automatized 
through batch processes, but a specialized technician should be in 
charge of the process since the digitalization of training and validation 
areas is mandatory. 

The interest of these applications will increase when time-series, that 
provide previous information, are available to compare with. In this 
sense, new products could be obtained like soil losses by erosion or 
vegetation change maps. This may increase the amount of monitoring 
and general scientific interest, since ecological and hydrological pro
cesses could be studied in high detail and covering large areas. More
over, if needed, the workflow could be improved by incorporating other 
products like those related to geotechnical risks or plague infestation, 
amongst others. 

Implementing this proposed workflow provides great potential on a 
large scale for effectively monitoring land restoration, as it can be used 
as a concrete tool for optimizing resources, ensuring sustainable mea
sures for land restoration, as well as creating and strengthening syn
ergies between companies, environmental scientists and public 
administrations. 
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